Math 100 , lecture $11,13 / 2 / 2024$
Con see me in ORCH 3009 today 9:30-10:00 11:30-12:00.
Ask on Pia33a
Last time: Taylor expansion
Understand function f near point a by creating polynomial

$$
T_{n}(x)=C_{0}+C_{1}(x-a)+\ldots+C_{n}(x-a)^{b}
$$

where

$$
C_{k}=\frac{f^{(k)}(a)}{k!} \quad ; k!=1 \cdot 2 \cdot 3 \cdot k
$$

such that

$$
(01=1!=1)
$$

chose c_{k} st. $T_{n}^{(k)}(a)=f^{(k)}(a)$ for $k=0,1,2, \ldots, n$

$$
\text { Examples: } \left.\begin{array}{ll}
e^{x}=1+x+x^{2} / x^{\prime}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots \frac{x^{k}}{1!}+\cdots \\
\text { exponential series } \\
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots & \left(\begin{array}{l}
\text { holds } \\
\text { geometric series }
\end{array}\right. \\
\text { if -1<x<1) }
\end{array}\right]
$$

Given f_{3} can find c_{k} by differentiation; given T_{n}, con red off c_{k}

Today : Actually expanding functions
\qquad
(8) \star (Final, 2016) Use a ard order Taylor approximation to estimate $\sin 0.01$. Then find the ard order Taylor expansion of $(x+1) \sin x$ about $x=0$.
$\sin \theta=\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\frac{\theta^{7}}{7!}+\ldots \quad$ (either from memory)
So $\sin \theta x \theta-\theta^{3} / 6$ to $3^{\text {rd }}$ order in θ
So $\sin (0.01) \approx 0,01-(0.01)^{3} /\left.6\right|_{\text {Iso }} ^{N}(x+1) \sin x=(1+x)\left(x-x^{3} / 6\right)=x+x^{2}-x^{3} / 6$
(9) Find the ard order Taylor expansion of $\sqrt{x-\frac{1}{4} x}$ about $x=4$ ($37 \quad 3 \quad-5 / 2 \quad-x^{9 / 6}$

Let $\left.f(x)=\sqrt{x}, f^{\prime \prime}(x)=\frac{1}{2} x^{-\frac{1}{2}}, f^{\prime \prime}(x)=-\frac{1}{9} x^{-3 / 2}, f^{(3)} / x\right)=\frac{3}{8} x^{-5 / 2}$
$5 x+x^{2}-x^{3} / 6$
$f(4)=2 ; f^{(n)}(4)=\frac{1}{4} ; f^{(2)}(4)=-\frac{1}{32}, f^{(3)}(4)=3 / 256$
$80 \sqrt{x} \approx 2+\frac{1}{4}(x-4)-\frac{2}{64}(x-4)^{2}+\frac{1}{512}(x-4)^{3}$ to $0^{\text {rd }}$ order
correct to $3^{\text {rd }}$ order
$\left.\frac{1}{4} x=\frac{1}{4}(4+(x-4))=1+\frac{1}{4}(x-4) \right\rvert\,$ (10) Find the eth order expansion of $\left.f(x)=e^{x^{2}}-\frac{1}{x}-\frac{1}{4} x+4\right)-\frac{1}{64}(x-4)^{2}-\frac{1}{\sqrt{12}}(x-4)^{3}$
(10) Find the 8 th order expansion of $f(x)=e^{x^{2}}-\frac{1}{1+x^{3}}$. What is $f^{(6)}(0)$?
 orcherinx $u=x^{2}$
$80 e^{x^{2}}-\frac{1}{12 x^{3}} \otimes x^{2}+x^{3}$
Find the quartic expansion of $\frac{1}{2 s i s i s i s}$ about $x=0$
$\cos \theta=1-\frac{1}{2} \theta^{2}+\frac{1}{\partial \infty} \theta^{4}$
to the order $\cos \theta=1-\frac{1}{2} \theta^{2}+\frac{1}{2 \theta}$
so $\cos 3 x=1-\frac{9}{2} x^{2}+\frac{27}{8} x^{4}$
$\left.\begin{array}{rl}-\frac{1}{2} x^{4}-5 / 6 \cdot x^{6}+\frac{1}{22} x^{8} \text { io pit ord } \\ f^{(50)}(0) & =6!\cdot(-5 / 6)\end{array}\right)=-600$.

$$
\begin{aligned}
& f^{(x)}(0)=6!\cdot(-5) \\
& \frac{1}{1-n}+1+n+6^{2}+
\end{aligned}
$$

so $\frac{1}{\cos 3 x}=\frac{1}{1-\frac{9}{2} x^{2}+\frac{27}{8} x^{2}} \approx \frac{1}{1-\left(\frac{9}{2} x^{2}-\frac{27}{8} x^{4}\right)}$ b

$$
=1+\left(\frac{9}{2} x^{2}-\frac{27}{8} x^{4}\right)+(\quad)^{2}
$$

(a) Find the Taylor expansion of the polynomial

$$
\approx 1+\frac{2}{2} x^{2}-\frac{2 g}{9} x^{4}+\frac{81}{4} x^{4}
$$

$$
f 1+\frac{9}{2} x^{2}+\frac{27}{2} x^{4}
$$

have other terms

