Matin 100, lecture 10, 8/2/2024
Last time: curve sketching
Today: Hisher-ooder approximation = Taylor expansion

Linear approximation: $f(x)=f(a)+f^{\prime}(a)(x-a)$
or $f(x+h) \propto f(x)+f^{\prime}(x) h$
function $f(x)$, linear approx $f(a)+f^{\prime}(a)(x-a)$
(0) have same value at a $(f(a))$
(i) have same derivative at a $\left(f^{\prime}(a)\right)$

Math 100:V02 - WORKSHEET 10
TAYLOR EXPANSION

1. TAYLOR EXPANSION
(1) (Review) Use linear approximations to estimate:
(a) $\log \frac{4}{3}$ and $\log \frac{2}{3}$. Combine the two for an estimate of $\log 2$.
At $\left.Q=1, \log 1=0,(\log x)^{\prime}\right]_{x=1}=\left[\frac{1}{x}\right]_{x=1}=1$ so $\operatorname{los} x=0+1 \cdot(x-1)$ $=(x-1)$
so $\log \frac{4}{3} \times \frac{1}{3}, \log \frac{2}{3}=-\frac{1}{3}$
so $\log 2=\log \frac{4 / 3}{2 / 3}=\log \frac{2}{3}-\log \frac{2}{3}=\frac{1}{3}-\left(-\frac{1}{3}\right) \times \frac{2}{3}$.
(b) $\sin 0.1$ and $\cos 0.1$.
$\cos 0=1,\left.(\cos \theta)^{\prime}\right|_{\theta=0}=\left.(-\sin \theta)\right|_{0=0}=0$ So $\cos \theta=1+0 \cdot \theta=1$ to $1^{\beta x}$ order $\operatorname{in} \theta$
$\cos 0.181$ to $1^{\text {st }}$ arden
(linear terra could be zero)

Date: 8/2/2024, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.
(2) Let $f(x)=e^{x}$
(a) Find $f(0), f^{\prime}(0), f^{(2)}(0), \cdots$
(b) Find a polynomial $T_{0}(x)$ such that $T_{0}(0)=f(0)$.
(c) Find a polynomial $T_{1}(x)$ such that $T_{1}(0)=f(0)$ and $T_{1}^{\prime}(0)=f^{\prime}(0)$.
(d) Find a polynomial $T_{2}(x)$ such that $T_{2}(0)=f(0)$, $T_{2}^{\prime}(0)=f^{\prime}(0)$ and $T_{2}^{(2)}(0)=f^{(2)}(0)$.
(e) Find a polynomial $T_{3}(x)$ such that $T_{3}^{(k)}(0)=f^{(k)}(0)$ for $0 \leq k \leq 3$.
(a) $f(0)=1$, QU $k \quad f^{(t)}(x)=e^{x}$, so $f^{(\theta)}(0)<1$
(b) $\tau_{0}(x)=1$ works
(c) $\Gamma_{1}(x)=1+1 \cdot x=1+x$ works (linear approx)
try $T_{1}(x)=a+b x$ want $T_{1}(0)=f(0)=1$ si take $a=1$ Gif $a=0, \tau,(0)=60=0$, so not good choice) want $T_{1}^{\prime}(0)=f^{\prime}(0)=1$. So take $b=1$, get $1+x$.
(d) try $a+b x+c x^{2}$
want $r_{2}(0)=1$, so need $a=1$
want $T_{2}^{\prime}(\theta)=1$, so $b+2 c \cdot 0=1$ so $b=1$

$$
\left(x^{2}\right)^{n}=2 \cdot 1=2
$$

want $T_{2}^{\prime \prime}(0)=1$, so $\alpha c=7$, si $c=\frac{1}{2}$
tale $1+x+\frac{1}{2} x^{2}$
$(e)^{\tan } 1+x+\frac{1}{2} x^{2}+d x^{3} \quad 3^{\text {rt }}$ derivative is $6 d \quad\left(x^{3}\right)^{n}=3 \cdot 2 \cdot 1=6$
So take $d=\frac{1}{6}, T_{3}(x)=1+x^{2}+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}$

Conclusion: to match kith derivative we added a correction of order k : a term $c_{k} x^{k}$.
choose c_{k} st. k^{\prime} th derivative of $\left(c_{k} x^{k}\right)$ is same as $f^{(t)}(0), 80 \quad C_{k}=\frac{1}{\left.1 \cdot 2 \cdot 3 \cdots C_{t}\right)} f^{(t)}(0)$

In general if we are expanding about $x=a$ Use

$$
C_{k}=\frac{1}{k!} f^{(k)}(a)
$$

$$
k!=1 \cdot 2 \cdot 3 \cdots \cdot k
$$

"k factorial".
Degree n Taylor polynomial / Taylor expansion of f about a is the polynomial

$$
\begin{gathered}
\tau_{n}(x)=f(a)+\frac{f^{\prime}(a)}{1}(x-a)+\frac{f^{(2)}(a)}{2!}(x-a)^{2}+ \\
\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
\end{gathered}
$$

(also say, $f(x) \approx \alpha_{n}(x)$ to $n^{\prime} h \frac{1}{2}$ order at $a^{\prime \prime}$)
Example: $f(x)=e^{x}, a=0, f^{(k)}(0)=1$ all k,

$$
e^{x}=1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\cdots \frac{1}{n!} x^{n}
$$

Let $c_{k}=\frac{f^{(k)}(a)}{k!}$. The nth order Taylor expansion of $f(x)$ about $x=a$ is the polynomial

$$
T_{n}(x)=c_{0}+c_{1}(x-a)+\cdots+c_{n}(x-a)^{n}
$$

(4) Find the th order MacLaurin expansion of $\frac{1}{1-x}$ (=Waybor expansion about $x=0$) chain rule
Let $f(x)=\frac{1}{1-x}=(2-x)^{\rightarrow}$ so $f^{\prime}(x)=-(1-x)^{-2} \cdot\binom{b}{-1}=(1-x)^{-2}$

$$
f^{\prime \prime}(x)=21(1-x)^{-3}, f^{\prime \prime \prime}(x)=3.2 .1(1-x)^{-4}, f^{(x 1)}(x)=4.3 .2 \cdot 1
$$

So $f(0)=1, \quad f^{(1)}(0)=1, \quad f^{(2)}(0)=2 \cdot 1, \quad f^{(3)}(0)=3.211$,

$$
\text { si } \begin{aligned}
& f_{4}^{(3 \cdot 1)}(0)=4 \cdot 3 \cdot 2 \cdot 1 \\
&=1+1 \cdot x+\frac{2 \cdot 1}{2 \cdot 1} x^{2}+\frac{3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1} x^{3}+\frac{4 \cdot 32 \cdot 1}{4 \cdot 3 \cdot 2 \cdot 1} x^{2} \\
& 21+x^{2}+x^{3}+x^{4} 3!
\end{aligned}
$$

know: To $n^{\text {th }}$ order in u

$$
\begin{aligned}
& e^{u} \& 1+u+\frac{1}{2} u^{2}+\frac{1}{3^{7}} u^{3}+\ldots+\frac{1}{n!} u^{n} \\
& \frac{1}{1-u} \propto 1+u+u^{2}+u^{3}+\cdots+u^{n}
\end{aligned}
$$

Warring: Common error
Evaluate derivatives at a (centre of the expansion) not x.
Gq: linear approx to e^{x} is $1+x$ not $e^{x}+e^{x} \cdot x$
Quadratic approx to $\frac{1}{1-x}$ is $1+x+x^{2}$ not $1+\frac{1}{1-x)^{2}} x+\frac{2}{2 \cdot(1-x)^{3}} x^{2}=-$
(5) $\star \star$ Find the nth order expansion of $\cos x$, and approximate $\cos 0.1$ using a ard order expansion

$$
\begin{aligned}
& \text { set proximate cos } \\
& g(x)=\cos x ; g^{(1)}(x)=-\sin x ; g^{(2)}(x)=-\cos x ; g^{(3)}(x)=\sin x \\
& g^{(q)}(x)=\cos x ; g^{(s)}(x)=-\sin x ; \quad \text { (repea ti) } \\
& g(0)=1, \quad g^{(1)}(0)=0, \quad g^{(2)}(0)=-1, \quad g^{(3)}(0)=0 \\
& \left.g^{(9)}(0)=1, \quad g^{(5)}(0)=0, g^{(6)}(0)=-7, \quad g^{(7)}(0)=0 \quad \text { (repeat }\right) \\
& \operatorname{sos} x=1-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}-\frac{1}{6!} x^{6}+\frac{1}{8!} x^{8} \ldots \\
& \sin x=x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}-\frac{1}{7!} x^{7}+\frac{1}{9!} x^{9} \ldots
\end{aligned}
$$

(6) $($ Final, 2015$) \star \operatorname{Let} T_{3}(x)=24+6(x-3)+12(x-3)^{2}+$ $4(x-3)^{3}$ be the third-degree Taylor polynomial of some function f, expanded about $a=3$. What is
$f^{\prime \prime}(3)$?
Solution 1: $C_{2}=\frac{f^{(2)}(3)}{2!}$ so $12=\frac{f^{(2)}(3)}{2}$ so $f^{\prime \prime}(3)=24$
solution 2: $T_{3}^{\prime \prime}(x)=12 \cdot 2+4.3 \cdot 2(x-3) T_{3}^{\prime \prime}(3)=243^{\prime \prime} f^{\prime \prime}(3)$
(7) In special relativity we have the formula $E=\frac{m c^{2}}{\sqrt{1-v^{2} / c^{2}}}$ for the kinetic energy of a moving particle. Here m is the "rest mass" of the particle and c is the speed of light. Examine the behaviour of this formula for small velocities by expanding it to second order in the small parameter $x=v^{2} / c^{2}$. What is the 4th order expansion of the energy? Do you recognize any of the terms?

2. NEW EXPANSIONS FROM OLD

Near $u=0: \quad \frac{1}{1-u}=1+u+u^{2}+u^{3}+u^{4} \cdots$ $\exp u=1+\frac{1}{1!} u+\frac{1}{2!} u^{2}+\frac{1}{3!} u^{3}+\frac{1}{4!} u^{4}+\cdots$
(8) \star (Final, 2016) Use a 3rd order Taylor approximation to estimate sin 0.01 . Then find the 3rd order Taylor expansion of $(x+1) \sin x$ about $x=0$.
(9) Find the 3rd order Taylor expansion of $\sqrt{x}-\frac{1}{4} x$ about $x=4$.
(10) Find the 8 th order expansion of $f(x)=e^{x^{2}}-\frac{1}{1+x^{3}}$. What is $f^{(6)}(0)$?
(11) Find the quartic expansion of $\frac{1}{\cos 3 x}$ about $x=0$.
(12) (Change of variable/rebasing polynomials)
(a) Find the Taylor expansion of the polynomial $x^{3}-x$ about $a=1$ using the identity $x=1+(x-1)$.
(b) Expand $e^{x^{3}-x}$ to third order about $a=1$.
(13) Expand $\exp (\cos 2 x)$ to sixth order about $x=0$.
(14) Show that $\log \frac{1+x}{1-x} \approx 2\left(x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\cdots\right)$. Use this to -get a good approximation to $\log 3$ via a careful choice of x.
(15) (2023 Piazza @389) Find the asymptotics as $x \rightarrow \infty$ (a) $\sqrt{x^{4}+3 x^{3}}-x^{2}$
(b) $\sqrt[3]{x^{6}-x^{4}}-\sqrt{x^{4}-\frac{2}{3} x^{2}}$
(16) Evaluate $\lim _{x \rightarrow 0} \frac{e^{-x^{2} / 2}-\cos x}{x^{4}}$.

