Math 100, Lecture 3 , 6/2/2024
Last time: Applying chain rule. Can differentiate identities with respect to any variable
(1) If $F(x, y)=0$ defines a curve can find $\frac{d y}{d x}$ by differentiating along the curve (using chain rule)
(2) If $F(x, y)=0$ enforces arolaiton between x, y can also diff wot t (take $\frac{d}{d t}$) use chain rule to set relation between $x, y, \frac{d x}{d x}, \frac{d y}{d x}$.
(3) If we have a function $r(x, 9)$ of two (or more) variables we can diff writ x holding y constant sect partial derivative $\frac{\partial F}{\partial x}$.

Notation for higher derivatives: $y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}, y^{1 \prime \prime}, \ldots$
(2) $\frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}, \frac{d^{3} y}{d r^{3}}, \ldots$
(1) $y^{(1)}, y^{(n)}, y^{(9)}, y^{(a)}$,
(3) $\frac{\partial f}{\partial x}, \frac{\partial^{2} f}{\partial y \partial x}, \frac{\partial^{3} f}{\partial x^{2} \partial y}$
$f_{x} \quad f_{x y} \quad f_{y x=}$

Math 100:V02 - WORKSHEET 9
 CURVE SKETCHING

1. Partial Derivatives

(1) Let $f(x, y)=x^{3}+3 y^{3}+5 x y^{2}$. Evaluate:
(a) $\frac{\partial f}{\partial x}=3 x^{2}+5 y^{2} \quad \frac{\partial f}{\partial y}=9 y^{2}+10 x y$

Today = Curve sketching (how $f^{\prime}, f^{\prime \prime}$ affect shape \& graph $y=f(x)$)
2. Convexity and Concavity
(2) Consider the curve $y=x^{3}-x$.
(a) Find the line tangent to the curve at $x=1$.

$$
\begin{aligned}
& \frac{d y}{d x}=3 x^{2}-1 \text { so } \begin{array}{l}
y(1)=1-1=0 \\
y^{\prime}(1)=3-1=2
\end{array} \text { so line if } y=2(x-1)
\end{aligned}
$$

(b) Near $x=1$, is the line above or below the curve? Hint: how does the slope of the curve behave to the right and left of the point?
f'so \Leftrightarrow tangent lire below graph
\Leftrightarrow "concave up"

opposite of $f^{\prime \prime}<0 \rho$
inflection point: change af concavity
(3) For each curve find its domain; where is it concave up or down? Where are the inflection points.
(a) $y=x \log x-\frac{1}{2} x^{2}$.
y is defined if x so so $\operatorname{los} x$ is defined

$$
y^{\prime}=\log x+x \cdot \frac{1}{x}-x=\log x+1-x ; \quad y^{\prime \prime}=\frac{1}{x}-1
$$

so $y^{\prime \prime}>0$ whore $\frac{1}{x}-1>0 \Leftrightarrow \frac{1}{x}>1 \Leftrightarrow 0<x<1$

$$
y^{\prime \prime}<0 \quad 1 \quad \frac{1}{x}-1<0 \Leftrightarrow \frac{1}{x}<1 \Leftrightarrow \quad x>1
$$

Concave up on $(0,1)$, concave down on $(1, \infty)$ inflection pt over $x=1$, at $\left(1,-\frac{1}{2}\right)$.
(b) $y=\sqrt[3]{x}$.
3. Curve sketching
(4) Let $f(x)=\frac{x^{2}}{x^{2}+1}$ for which $f^{\prime}(x)=\frac{2 x}{\left(x^{2}+1\right)^{2}}$ and $f^{\prime \prime}(x)=$ $\frac{2\left(1-3 x^{2}\right)}{\left(x^{2}+1\right)^{3}}$.
(a) What are the domain and intercepts of f ? What are the asymptotics at $\pm \infty$? Are there any vertcal asymptotes? What are the asymptotices there?
f defined every where / os $\mathbb{R} /$ on $(-\infty, \infty)$
Is $x \rightarrow \pm \infty, \frac{x^{2}}{x^{2}+1} \backsim \frac{x^{2}}{x^{2}} \backsim 1$.
f defined by formula \Rightarrow cts a no vertical asymptotes
(b) What are the intervals of increase/decrease? The local and global extrema?
$f^{\prime}(x)=\frac{2 x}{\left(x^{2}+1\right)^{2}}$ has same sign as x.
So f is increasing on $(0, \infty)$
decreasing on $(-\infty, 0)$
global minimum at $(0,0)$.
(c) What are the intervals of concavity? Any inflecdion points?
$f^{\prime \prime}(x)=\frac{2\left(1-3 x^{2}\right)}{\left(x^{2}+1\right)^{3}}$ has same sign as $1-3 x^{2}$
Now $1-3 x^{2}>0$ if $1>3 x^{2} \Leftrightarrow \frac{1}{3}>x^{2} \Leftrightarrow-\frac{1}{\sqrt{3}}<x<\frac{1}{\sqrt{3}}$
$1-3 x^{2}<0$ if $1<3 x^{2} \Leftrightarrow \frac{1}{3}<x^{2} \Leftrightarrow x>\frac{1}{\sqrt{3}}$ or $x<-\frac{1}{3}$
$\Rightarrow f$ concurs up on $\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$, down on $\left(-\infty,-\frac{1}{\sqrt{3}}\right),\left(\frac{1}{3}, \infty\right)$
inflection points over $x=-\frac{1}{\sqrt{3}}, \quad x=\frac{1}{\sqrt{3}}: \quad\left(\pm \frac{1}{\sqrt{3}}, \frac{1}{4}\right)$
(d) Sketch a graph of $f(x)$.

(5) $\star \star$ Let $f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$.
(a) What are the domain and intercepts of f ? What are the asymptotics at $\pm \infty$? Are there any vertical asymptotes? What are the asymptotices there?
(b) What are the intervals of increase/decrease? The local and global extrema?
(c) What are the intervals of concavity? Any inflection points?
(d) Sketch a graph of $f(x)$.
(6) (Final, December 2007) $\star \star$ Let $f(x)=x \sqrt{3-x}$.
(a) Find its domain, intercepts, and asymptotics at the endpoints.
(b) What are the intervals of increase/decrease? The local and global extrema?
(c) Given $f^{\prime \prime}(x)=\frac{3 x-12}{4}(3-x)^{-3 / 2}$, what are the intervals of concavity? Any inflection points?
(d) Sketch a graph of $f(x)$.

