Math 10, lecture 8, 1/2/2024
Last timer chain Rule: $\quad(f(g(x)))^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)$

$$
\Rightarrow \frac{d z}{d x}=\frac{d z}{d y} \cdot \frac{d y}{d x} \text { if } y=y(x)
$$

Todays: (1) Apply chain rule
(i) implicit diff
(ii) "related rates"
(2) Partial derivatives

Math 100:V02 - WORKSHEET 8 APPLICATIONS OF THE CHAIN RULE

1. REVIEW
(1) Differentiate
(a) $e^{\sqrt{\cos x}}$

$$
\left(e^{\sqrt{\cos x}}\right)^{\prime}=e^{\sqrt{\cos x}} \cdot \frac{1}{2 \sqrt{\cos x}} \cdot(-\sin x)
$$

(or: if $y=e^{\sqrt{\cos x}}, \operatorname{los} y=\sqrt{\cos x}$, diff both Si l

-)
(2) (Final, 2014) Let $y=x^{\log x}$. Find $\frac{d y}{d x}$ in terms of x

Date: $2 / 2 / 2024$, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.
2. Implicit Differentiation
(3) Find the line tangent to the curve $y^{2}=4 x^{3}+2 x$ at the point $(2,6)$.
Diff along the (curve get $\frac{d}{d r}\left(y^{2}\right)=\frac{d}{d x}\left(4 x^{3}+2 x\right)$

$$
\Rightarrow 2 y \cdot \frac{d y}{d x}=12 x^{2}+2
$$

At $(2,6)$ set $12 \cdot y^{\prime}=48+2=50$
so $y^{\prime}=\frac{50}{12}=\frac{25}{6}$ so line is $y=\frac{25}{6}(x-2)+6$
(4) (Final, 2015) Let $x y^{2}+x^{2} y=2$. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at the point $(1,1)$.
Diff both sides a long the curve: $\frac{d}{d x}\left(x y^{2}+x^{2} y\right)=\frac{d}{d x}(2)$

$$
\begin{aligned}
& \frac{d(2)}{d x}=0 ; \frac{d\left(x y^{2}+x^{2} y\right)}{d x}=\frac{d\left(x y^{2}\right)}{d x}+\frac{d\left(x^{2} y\right)}{d x} \\
& =\left[\frac{d x}{d x} y^{2}+x \frac{d\left(y^{2}\right)}{d x}\right]+\left[\frac{d\left(x^{2}\right)}{d x} y+x^{2} \frac{d y}{d x}\right]=\int^{\frac{d}{x}}=y^{2}+x \frac{d\left(y^{2}\right)}{d y} \cdot \frac{d y}{d x} \\
& \text { pdt rub } \\
& \quad=2 x y+x^{2} \frac{d y}{d x}= \\
& =u^{2}+2 x y \frac{d y}{d x}+2 x y+x^{2} \frac{d y}{d x}
\end{aligned}
$$

so at $(1,1,1) \quad 1+2 \frac{d y}{d x}+2+\frac{d y}{d x}=0 \quad \Rightarrow 3 \frac{d y}{d x}=-3$
so $d y / d x=-1$, line is $\quad \sqrt{y}=-(x-1)+11=2-x$

Th senoral set $\left(x^{2}+2 x y\right) \frac{d y}{d x}+\left(y^{2}+2 x y\right)=0$

$$
\text { so } \frac{d y}{d x}=-\frac{y^{2}+2 x y}{x^{2}+2 x y}
$$

Carve is $x^{2} y+x y^{2}=2$ so $x \neq 0$ on curve if $x \neq 0$ can still haw $x^{2}+2 x y=0$ if

$$
\begin{array}{cl}
\text { if } x=-2 y \quad 4 y^{3}-2 y^{3}=2 & \text { si } 2 y^{3}=2 \text { so } y^{3}=1 \\
\text { so } y=1, \quad x=-2 &
\end{array}
$$

(5) (Final 2012) Find the slope of the line tangent to the curve $y+x \cos y=\cos x$ at the point $(0,1)$.
(6) Find $y^{\prime \prime}$ (in terms of x, y) along the curve $x^{5}+y^{5}=$ 10 (ignore points where $y=0$).
Diff along curve set: $5 x^{4}+5 y^{4} \cdot y^{\prime}=0$
Diff again, set $\quad 20 x^{3}+5\left(4 y^{3} y^{\prime}\right) \cdot y^{\prime}+5 y^{4} \cdot y^{\prime \prime}=0$

$$
\begin{array}{ll}
\text { so } \quad y^{4} \cdot y^{\prime \prime}=-4 x^{3}-4 y^{3}\left(y^{\prime}\right)^{2} \\
\text { so } \quad y^{\prime \prime}=-\frac{4 x^{3}}{y^{4}}-\frac{4}{y}\left(y^{\circ}\right)^{2} \quad\left\{\begin{array}{l}
\text { also }
\end{array} \quad y^{\prime}=-\frac{5 x^{4}}{5 y^{00}}=-\frac{x^{40}}{y^{4}}\right.
\end{array}
$$

Discussion,
Calculus step:
diff twice
solve for $y^{\prime}, y^{\prime \prime}$

Summary: St we haw relation $F(x, y)=0$ can diff both sides, wit x use chain rule to set linear equation for $\frac{d y}{d x}$.
What if x, y are bot functions of t ?
can diff wot t, get linear equity connecting $d x / d t, d y / d t$.
3. Related Rates
(5) A particle is moving along the curve $y^{2}=x^{3}+2 x$. When it passes the point $(1, \sqrt{3})$ we have $\frac{\mathrm{d} y}{\mathrm{~d} t}=1$. Find $\frac{\mathrm{d} x}{\mathrm{~d} t}$.
Solution 1: diff wit x aet $2 y \cdot \frac{d y}{d x}=3 x^{2}+2$
So at given point $\frac{d y}{d x}=\frac{5}{2 \sqrt{3}}, \frac{d y}{e c t}=1$
so $\frac{d x}{d t}=\frac{d y}{d t} / \frac{d y}{d x}=\frac{2 \sqrt{3}}{5}$
solution 2: $\frac{d}{d y}: \quad 2 y=3 x^{2} \cdot \frac{d x}{d y}+2 \frac{d x}{d y}$

$$
\Rightarrow \text { at }(1, \sqrt{3}), \frac{d x}{d y}=\frac{2 \sqrt{3}}{5}
$$

So $\frac{d x}{d t}=\frac{d x}{d y} \cdot \frac{d y}{d t}=\frac{2 \sqrt{3}}{5} \cdot 1=\frac{2 \sqrt{3}}{5}$
Solution.3. hit with $\frac{d}{d t}: 2 y \frac{d y}{d t}=3 x^{2} \cdot \frac{d x}{d t}+2 \frac{d x}{d t}$ at $(1, \sqrt{3})$, with $\frac{d y}{d t}=1$ set $2 \sqrt{3} \cdot 1=3 \cdot \frac{d x}{d t}+2 \cdot \frac{d x}{d t}$

$$
\text { fo } \frac{d x}{d t}=\frac{2 \sqrt{3}}{s}
$$

(6) The state of a quantity of gas in a piston must satisfy the ideal gas law

$$
P V=n R T
$$

where P is the pressure, V is the volume, n is the number of moles of gas, T is the (absolute) temperature and R is the ideal gas constant. Suppose $P=1 \mathrm{~atm}$ and $V=22.4 \mathrm{~L}$. How fast is the pressure of the gas changing when $\frac{d V}{d t}=2.5 \frac{\mathrm{~L}}{\mathrm{~min}}$, if the expansion is isothermal, that is with T held constant?

4. PARTIAL DERIVATIVES

(7) Returning to the equation $P V=n R T$ now treat the temperature as a function of both pressure and volume.
(a) Suppose the volume is constant. What is the rate of change of temperature with respect to pressure?
(b) Suppose the pressure is constant. What is the rate of change of temperature with respect to pressure?
(c) What is the rate of change of the temperaure with respet to the number of moles of gas, pressure and volume being constant?

