Math D0, lecture $7,30 / 1 / 2024$
Last time: exponentials: $C \cdot b^{x} . C e^{r x}$.

$$
\left.\frac{d}{d x}\left(b^{x}\right)=(\log b) \cdot b^{x}\right]\left[\frac{d \sin \theta}{d \theta}=\cos \theta, \frac{d \cos \theta}{d \theta}=-\sin \theta\right.
$$

$$
\frac{d}{d x}\left(C_{e}^{r x}\right)=C_{r} e^{r x} \Rightarrow y(x)=C_{e}^{r x} \text { so lues the }
$$ differential equation $y^{\prime}=r y$.

Ex. $\frac{d \tan \theta}{d \theta}=1+\tan ^{2} \theta$. $\quad\left(\tan \theta=\frac{\sin \theta}{\cos \theta}\right)$
Know $\sin \theta, \cos \theta, \tan \theta$ for θ multiple of $\frac{\pi}{6}$ or $\frac{\pi}{4}$.

Today: Chain rule
Handles differentiation of compositions of functions:

$$
(f \circ g)(x) \stackrel{\operatorname{def}}{=} f(g(x))
$$

Math 100:V02 - WORKSHEET 7
THE CHAIN RULE

1. The Chain Rule
(1) We know $\frac{d}{d y} \sin y=\cos y$.
$\sin (y+h) \neq \sin y+\sin h$
(a) Expand $\sin (y+h)$ to linear order in h. Write down the linear approximation to $\sin y$ about $y=a$.
$\sin (y+h) \approx \sin y+(\cos y) \cdot h$
$\sin y \& \sin a+\cos a \cdot(y-a)$
(b) Now let $F(x)=\sin (3 x)$. Expand $F(x+h)$ to linear order in h. What is the derivative of $\sin 3 x$?

$$
\begin{array}{r}
F(x+h)=\sin (3(x+h))=\sin (3 x+3 h)=\sin (3 x)+\cos (3 x) \cdot 3 h \\
5 F(x)+(\cos (x) \cdot 3) h
\end{array}
$$

$$
\text { s } \quad F^{\prime}(x)=\cos (3 x) \cdot 3
$$

step 1: meseo linear
appoox step2: read off coeff of h

Date: 30/1/2024, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

Say $F(x)=f(y)$ where $y=c x$
if $f(y+h)=f(y)+f^{\prime}(y) \cdot h$
then

$$
\begin{aligned}
F(x+h) & =f(c(x+h)) \times f(c x+c h) \\
& \& f(c x)+f^{\prime}(c x) \cdot c h \\
& =f(x)+\left(f^{\prime}(c x) \cdot c\right) \cdot h
\end{aligned}
$$

so $\frac{d}{d x}(f(c x))=f^{\prime}(c x) \cdot c$

$$
\begin{array}{r}
\frac{d f(c x)}{d x}=\frac{\frac{d(f(c x))}{d(c x)} \cdot \frac{d(c x)}{d x}}{} \begin{array}{c}
\frac{d f(y)}{d y} \text { if } y=c x
\end{array}, \quad \frac{1}{c}
\end{array}
$$

(2) Write each function as a composition and differentiate
(a) $e^{3 x}$

$$
\text { here } e^{3 x}=e^{y}
$$

$$
y=3 x
$$

$$
\frac{d\left(e^{4}\right)}{d y}=e^{y} \quad \frac{d\left(e^{4}\right)}{d x}=e^{4} \cdot 3=e^{3 x} \cdot 3
$$

(b) $\sqrt{2 x+1}=\sqrt{y}$ where $y=2 x+1$

$$
\frac{d(\sqrt{y})}{d y}=\frac{1}{2 \sqrt{y}} \Rightarrow \frac{d(\sqrt{2 x+1})}{d x}=\frac{1}{2 \sqrt{2 x+1}} \cdot 2=\frac{1}{\sqrt{2 x+1}}
$$

In general, if $F(x) ; f(g(x))=f(y), y=g(x)$ what is $F^{\prime}(x)$?
have $g(x+h): g(x)+g^{\prime}(x) \cdot h \overbrace{}^{y} \overbrace{}^{\Delta y}$
so $\quad F(x+h)=f\left(y(x+h) \equiv f\left(g(x)+g^{\prime}(x) h\right)\right.$
if we wort to $1^{\text {st }}$ order
linear approx oof can replace gog with its linear approx.

$$
\begin{gathered}
k f(g(x))-f^{\prime}(g(x)) \cdot g^{\prime}(x) h \\
=F(x)+\left(f^{\prime}(g(x)) \cdot g^{\prime}(x)\right) h \\
\text { so } \frac{d(f(g(x))}{d x}=\left.\frac{d f}{d y}\right|_{y \cdot g(x)} \cdot \frac{d g}{d x} \quad\left(f(g(x))^{\prime}=f^{\prime}(g(x))\right. \\
\cdot g^{\prime}(x)
\end{gathered}
$$

(c) (Final, 2015) $\sin \left(x^{2}\right)$
(1) write $\sin \left(x^{2}\right)=\sin \theta$ with $\theta=x^{2}$
so $\frac{d\left(\sin \left(x^{2}\right)\right)}{d x}=\frac{d(\sin \theta)}{d x}=\frac{d(\sin \theta)}{d \theta} \cdot \frac{d \theta}{d x}=\cos \theta \cdot 2 x$

$$
=\cos \left(x^{2}\right) \cdot 2 x
$$

(2) $\frac{d\left(\sin \left(x^{c}\right)\right)}{d x}=\frac{d\left(\sin \left(x^{2}\right)\right)}{d\left(x^{c}\right)} \cdot \frac{d\left(x^{2}\right)}{d x}=\cos \left(x^{c}\right) \cdot 2 x$
(d) $(7 x+\cos x)^{n}$.
(3) $\left(\sin \left(x^{2}\right)\right)^{\prime}=\cos \left(x^{2}\right) \cdot 2 x$

$$
\begin{aligned}
\frac{d}{d x}(7 x+\cos x)^{n} & =n(7 x+\cos x)^{n} \cdot \underbrace{\substack{\text { power low } \\
\text { rule }}}_{\substack{n)}} \begin{aligned}
& \frac{d(7 x+\cos x)}{d x} \\
&=n(7 x+\cos x)^{n-1} \cdot(7-\sin x)
\end{aligned}
\end{aligned}
$$

(3) (Final, 2012) Let $f(x)=g(2 \sin x)$ where $g^{\prime}(\sqrt{2})=$ $\sqrt{2}$. Find $f^{\prime}\left(\frac{\pi}{4}\right)$.
by the chain rule. $f^{\prime}(x)=g^{\prime}(2 \sin x) \cdot 2 \cos x$

$$
\text { so } \quad f^{\prime}\left(\frac{\pi}{4}\right)=9^{\prime}\left(2 \sin \frac{\pi}{4}\right) \cdot 2 \cos \left(\frac{\pi}{4}\right)
$$

$$
\begin{aligned}
& =g^{\prime}(\sqrt{2}) \cdot \sqrt{2}=\sqrt{2} \cdot \sqrt{2}=2 \\
\sin \frac{\pi}{9} & =\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}=\cos \frac{\pi}{4}
\end{aligned}
$$

(4) Differentiate
(a) $7 x+\cos \left(x^{n}\right)$

$$
\left(7 x+\cos \left(x^{n} n\right)^{\prime}=7-\sin \left(x^{n}\right) \cdot n x^{n-1}\right.
$$

(b) $e^{\sqrt{\cos x}}$

$$
\begin{aligned}
\frac{d\left(e^{\sqrt{\cos })}\right.}{d x} & =\frac{d\left(e^{\sqrt{\cos x}}\right)}{d \sqrt{\cos x}} \cdot \frac{d(\sqrt{\cos x})}{d \cos x} \cdot \frac{d \cos x}{d x} \\
& =e^{\sqrt{\cos x}} \cdot \frac{1}{2 \sqrt{\cos x}}-(-\sin x)
\end{aligned}
$$

(c) (Final 2012) $e^{(\sin x)^{2}}$

$$
\left(e^{(\sin x)^{2}}\right)^{\prime}=e^{(\sin x)^{2}} \cdot 2 \sin x \cdot \cos x
$$

(5) Suppose f, g are differentiable functions with $f(g(x))=$ x^{3}. Suppose that $f^{\prime}(g(4))=5$. Find $g^{\prime}(4)$.
say $y=\log x$ want $\frac{d y}{d x}$.
$y=\operatorname{los} x$ if $e^{y}=x$ si $\frac{d\left(e^{y}\right)}{d x}=\frac{d x}{d x}$
so $\quad 1=\frac{d\left(e^{y}\right)}{d x}=\frac{d\left(e^{y}\right)}{d y} \cdot \frac{d y}{d x}=e^{y} \cdot \frac{d y}{d x}$
so $\frac{d y}{d x}=\frac{l}{e^{y}}=\frac{1}{x} \Rightarrow \frac{d(\operatorname{Cos} x)}{d x}=\frac{1}{x}$

2. Differentiating Logarithms

(6) $\log \left(e^{10}\right)=$
$\log \left(2^{100}\right)=$
(7) Differentiate
(a) $\frac{\mathrm{d}(\log (a x))}{\mathrm{d} x}=$
$\frac{\mathrm{d}}{\mathrm{d} t} \log \left(t^{2}+3 t\right)=$
(b) $\frac{\mathrm{d}}{\mathrm{d} x} x^{2} \log \left(1+x^{2}\right)=$ $\frac{\mathrm{d}}{\mathrm{d} r} \frac{1}{\log (2+\sin r)}=$
(8) (Logarithmic differentiation) differentiate $y=\left(x^{2}+1\right) \cdot \sin x \cdot \frac{1}{\sqrt{x^{3}+3}} \cdot e^{\cos x}$.
(9) Differentiate using $f^{\prime}=f \times(\log f)^{\prime}$ (a) $\star x^{n}$
(b) x^{x}
(c) $(\log x)^{\cos x}$
(d) (Final, 2014) Let $y=x^{\log x}$. Find $\frac{d y}{d x}$ in terms of x only.

3. More problems
 (10) Let $f(x)=g(x)^{h(x)}$. Find a formula for f^{\prime} in terms of g^{\prime} and h^{\prime}.

(11) Let $f(\theta)=\sin ^{2} \theta+\cos ^{2} \theta$. Find $\frac{d f}{d \theta}$ without using trigonometric identities. Evaluate $f(0)$ and conclude that $\sin ^{2} \theta+\cos ^{2} \theta=1$ for all θ.
(12) ("Inverse function rule") suppose $f(g(x))=x$ for all x.
(a) Show that $f^{\prime}(g(x))=\frac{1}{g^{\prime}(x)}$.
(b) Suppose $g(x)=e^{x}, f(y)=\log y$. Show that $f(g(x))=x$ and conclude that $(\log y)^{\prime}=\frac{1}{y}$.
(c) Suppose $g(\theta)=\sin \theta, f(x)=\arcsin x$ so that $f(g(\theta))=\theta$. Show that $f^{\prime}(x)=\frac{1}{\sqrt{1-x^{2}}}$.

> (13) (Final, 2015) Let $x y^{2}+x^{2} y=2$. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at the point $(1,1)$.

