Math 100, lecture $6,25 / 1 / 2024$
Last time:
Saw: Derivative is defined by linear approx

$$
\begin{aligned}
& f(x+h)=f(x)+f^{\prime}(x) h \leftarrow \operatorname{linelar}_{x} \operatorname{inh} h \\
& f(x)=f(a)+f^{\prime}(a)(x-a) \leftarrow \operatorname{linnear}_{a} \operatorname{lin} x \\
& a \text { constant }
\end{aligned}
$$

Can also often find f^{\prime} using formulas, obtain linear approximation

Example: we showed

$$
\begin{aligned}
& (f+q)^{\prime}=f^{\prime}+q^{\prime} \quad(\alpha f)^{\prime}=\alpha f^{\prime} \\
& (f q)^{\prime}=f^{\prime} q+f q^{\prime} \\
& \left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} q-f q^{\prime}}{q^{2}}
\end{aligned}
$$

using linear approx

Math 100:V02 - WORKSHEET 6
EXPONENTIAL AND TRIG FUNCTIONS

1. REVIEW: ARITHMETIC OF DERIVATIVES
(1) Differentiate
(a) (Final, 2016) $g(x)=x^{2} e^{x}$ (and then also $x^{a} e^{x}$)

$$
g^{\prime}(x)=2 x \cdot e^{x}+x^{2} e^{x}
$$

(b) (Final, 2016
6) $h(x)=\frac{x^{2}+3}{2 x-1}$

$$
h^{\prime}(x)=\frac{2 x(2 x-1)-\left(x^{2}+3\right) \cdot 2}{(2 x-1)^{2}}=\frac{2 x^{2}-2 x-6}{(2 x-1)^{2}}
$$

$=2 \frac{x^{2}-x-3}{(2 x-1)^{2}} \quad$ (factor to see where f'so, f <0)
(2) Let $f(x)=\frac{x}{\sqrt{x}+A}$. Given that $f^{\prime}(4)=\frac{3}{16}$, give a quadratic equation for A.

$$
\begin{aligned}
& f^{\prime}(x)=\frac{(\sqrt{x}+A)-x \cdot \frac{1}{2 \sqrt{x}}}{(\sqrt{x}+A)^{2}}=\frac{\frac{1}{2} \sqrt{x}+A}{(\sqrt{x}+A)^{2}} \quad \begin{array}{l}
\text { interpret } f^{\prime}(f)=\frac{3}{0} \text { as an } \\
\text { equation for } A
\end{array} \\
& \text { so } f^{\prime}(4)=\frac{1}{2 \cdot 2+A}(2+A)^{2}
\end{aligned}=\frac{A+1}{(A+2)^{2}} \text { so } \frac{A+1}{(A+2)^{2}}=\frac{3}{16} .
$$

(3) Suppose that $f(1)=1, g(1)=2, f^{\prime}(1)=3, g^{\prime}(1)=$ 4.
(a) What are the linear approximations to f and g at $x=1$? Use them to find the linear approximation to $f g$ at $x=1$.

$$
\begin{aligned}
& f(x) \propto f(1)+f^{r}(1)(x-1)=1+3(x-1) \\
& g(x)=2+4(x-1) \\
& \text { so } f(x) g(x) \&(1+3(x-1))\left(2+9(x-11)=1 \cdot 2+(3-2+1-9)(x-1)+12(x-1)^{2}\right. \\
& \propto 2+10(x-1)+12(x-1)^{2} \propto 2+10(x-1)
\end{aligned}
$$

correct to $1^{\text {st }}$ order
Or: $(f g)^{\prime}(1)=f^{\prime}(1) g(1)+f(1) g^{\prime}(1)=3 \cdot 2+1.4=10$

$$
(f a)(1)=f(1) g(1)=1.2=2
$$

\& formulas such as
(b) Find $(f g)^{\prime}(1)$ and $\left(\frac{f}{g}\right)^{\prime}(1)$. product rule, sum rule,.. work point-by-point.

$$
\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime}(1) g(1)-f(1) g(1)}{(g(1))^{2}}=\frac{3 \cdot 2-1 \cdot 4}{2^{2}}=\frac{1}{2} .
$$

Today: exponentials\& trig functions
Facts: $b^{x+4}=b^{x} b^{4},(b c)^{x}=b^{x} c^{x}, b^{0}=1$
Want to diff b^{x} at x. look at $b^{x+h}=b^{x} \cdot b^{b}$ note $b^{h}=b^{0+h} \approx 1+2(b) \cdot h$ is lin approx at 0 ,

$$
L(b)=\left.\frac{d}{d x} b^{x}\right|_{x=0}
$$

So $b^{x+h} a b^{x}(1+L(B) h) \& b^{x}+L(b) b^{x} \cdot h$ value ot F © slope
so $\frac{d}{d x}\left(b^{x}\right)=2(b) \cdot b^{x}$
Facts $L(b)=\log b, \frac{d}{d x}\left(b^{x}\right)=(\log b)-b^{x}$
e is the number such that $L(e)=1$ so $\frac{d}{d x} e^{x}=e^{x}$
Conclusion: $4 b^{x}$ has property $y^{\prime}=r . y \quad r=\log b$
Occurs in population models, disease models, radioactive decay.
write solution to $y^{\prime}=r y$ as $y(x)=C \cdot e^{r x}$, or $y(x)=C \cdot\left(e^{r}\right)^{x}$
2. EXPONENTIALS
(5) Simplify
(a)

$$
\begin{array}{ll}
\left(e^{5}\right)^{3},\left(2^{1 / 3}\right)^{12}, 7_{n}^{3-5} \\
e^{15} & 2^{4}=16
\end{array} 7^{-2} .
$$

(b) $\log \left(10 e^{5}\right), \log \left(3^{7}\right)=7 \log 3$

$$
\log (10)+\log \left(e^{5}\right)=\log 10+5
$$

(6) Differentiate:
(a) 10^{x}

$$
\frac{d}{d x}\left(10^{x}\right)=(\log 10) \cdot 10^{x}
$$

(b) $\frac{5 \cdot 10^{x}+x^{2}}{3^{x}+1}$ quoticant rule

$$
\begin{aligned}
& \frac{d}{d x}\left(\frac{5 \cdot 10^{x}+x^{2}}{3^{x}+1}\right)=\frac{d \frac{d}{d x}\left(5 \cdot 10^{x}+x^{2}\right) \cdot\left(3^{x}+1\right)-\left(5 \cdot 10^{x}+x^{2}\right) \cdot \frac{d}{d x}\left(3^{x}+1\right)}{\left(3^{x}+1\right)^{2}} \\
& \text { linearity } \\
& \underset{y}{y}=\frac{\left(\frac{d}{d x} \cdot 10^{x}+\frac{d x^{2}}{d x}\right)\left(3^{x}+1\right)-\left(5 \cdot 10^{x}-x^{2}\right)\left(\frac{d}{d x} 3^{x}+\frac{d}{d x} \cdot 1\right)}{\left(3^{x}+1\right)^{2}} \\
& =\frac{\left(5 \cdot\left(\log (0) \cdot 10^{x}+2 x\right)\left(3^{x}+1\right)-\left(5 \cdot 10^{x}+x^{2}\right)(\operatorname{los} 3) \cdot 3^{x}+0\right)}{\left(3^{x}+1\right)^{2}} \in \begin{array}{c}
\text { exponentival } \\
\text { ruwer low } \\
\text { power law }
\end{array}
\end{aligned}
$$

3. TRigonometric functions

(7) (Special values) What is $\sin \frac{\pi}{3}$? What is $\cos \frac{5 \pi}{2}$?
(8) Derivatives of trig functions
(a) Interpret $\lim _{h \rightarrow 0} \frac{\sin h}{h}$ as a derivative and find its value.
(b) Differentiate $\tan \theta=\frac{\sin \theta}{\cos \theta}$.
(9) What is the equation of the line tangent the graph $y=T \sin x+\cos x$ at the point where $x=\frac{\pi}{4} ?$

