Math 100, lecterno 8
Lest time: () Continuity
(a) Formally, f is cts at a 1f lim
$$f(x) = f(a)$$

(b) informally, "no break" in graph
(c) Practically, inset" functions in science (etc)
are continuous outside "olvious" points, so
continuity \leftrightarrow glueing function values
(2) Derivative: continuity means (if $f(a) \neq 0$)
what $f(x) \lor f(a)$ as $x \rightarrow a$
then $f(x) \vdash f(a) \lor c \cdot f(x-a)$ (only way
 $f(x) \dashv f(a) \lor c \cdot f(x-a)$ (only way
 $f(x) \dashv f(a) \lor c \cdot f(x-a)$ (only way
 $f(x) \dashv f(a) \dashv c \cdot f(x-a)$ (only way
 $f(x) \dashv f(a) \dashv c \cdot f(x-a)$ (only way
 $f(x) \dashv f(a) \dashv c \cdot f(x-a)$ (only way
 $f(x) \dashv f(a) \dashv c \cdot f(x-a)$ (only way
 $f(x) \dashv f(a) \dashv c \cdot f(x-a)$ (only way
 $f(x) \dashv f(a) \dashv c \cdot f(x-a)$ (only way
 $f(x) \dashv f(a) \dashv c \cdot f(x-a)$ (only way
 $f(x) \dashv f(a) \dashv c \cdot f(x-a)$ (only way
 $f(x) \dashv f(a) \dashv c \cdot f(x-a)$ (only way
 $f(a \dashv a) \dashv f(a) \dashv c \cdot f(a) \dashv c \cdot f(a)$)
(incar
 $f(a \dashv b) \dashv f(a) \dashv f(a) \lor (x-a)$ the tangent line
(the line $y = f(a) + f(a)(x-a)$ the tangent line
(the line tangent to f at (a, f(a))).
(c) Seo: if $f(a) \succ o$, $f(a) \dashv (a, f(a))$ (c)
(c) Seo: if $f(a) \lor o$, $f(a) \dashv (a, f(a))$).

Math 100:V02 – WORKSHEET 4 CALCULATING DERIVATIVES

Date: 23/1/2024, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

(a)
$$f(x) = x^3 - 2x$$
, any *a* (you may use $(a+h)^3 = a^3 + 3a^2h + 3ah^2 + h^3$).

Today: compute derivatives

If f is differentiable (= has a derivative) at every point of (9,2) get a derivative function f'(x), df/dx.

<u>Goal</u>: compute using rules. Facts $d_r(x^n) = nx^{n-1}$, $d_re^{\chi} = e^{\chi}$ instance base of the logarithm.

2. The tangent line

(6) Find the lines of slope 3 tangent to the curve $y = x^3 + 4x^2 - 8x + 3$.

(7) The line y = 5x + B is tangent to the curve $y = x^3 + 2x$. What is B?

3. LINEAR APPROXIMATION
Definition.
$$f(a + h) \approx f(a) + f'(a)h$$

(8) Estimate
(a) $\star \sqrt{1.2}$
Contrinuity Says: UP =7
Cot $f(x) = f(x) = x^{\frac{1}{2}}$. Know $f(i)$, wont $f(i.2)$.
 $f'(x) = \frac{1}{2}x^{-\frac{1}{2}}$. $f'(i) = \frac{1}{2}$ so $f(x) \in f(i) + \frac{1}{2}(x-i)$ (b) for
 $f(i+h) = f(i) + \frac{1}{2}h$ (order
So $f(i.2) \propto |i+\frac{1}{2} \cdot 0 \cdot 2 = [.1]$ $\approx |i+\frac{1}{2}h$

(b) \star (Final, 2015) $\sqrt{8}$

(c) * (Final, 2016)
$$(26)^{1/3}$$

(e) $f(x) = x^{1/3}$ $f(x) = \frac{1}{3}x^{-2/3}$
 $f(x) = \frac{1}{3$

4. ARITHMETIC OF DERIVATIVES (2) Differentiate (a) $\star f(x) = 6x^{\pi} + 2x^e - x^{7/2}$

(b) \star (Final, 2016) $g(x) = x^2 e^x$ (and then also $x^a e^x$)

$$\frac{\text{Diff } yulos}{(4\pi)^{2}} : \text{Enow}$$

$$\frac{\text{fig functions}}{(4\pi)^{2}} = \frac{1}{2} \cdot \frac{$$