Math 100, lectaro 5
Least time: (1) Continuity
(a) Formally f is cts at a if $\lim _{x \rightarrow a} f(x)=f(a)$
(b) informally, "no break" in graph
(c) Practically, most ${ }^{\text {t }}$ functions in science (etc) are continuous outside "obvious" points, so continuity \leftrightarrow glueing function values
(2) Derivative: continuity means (If $f(a) \neq 0)$ a that $f(x) \backsim f(a)$ as $x \rightarrow a$ then $f(x)-f(a) \rightarrow 0$ how?
Usually, $f(x)-f(a) \sim c \cdot f(-a) \quad$ any way

$$
\text { 4, } \left.\begin{array}{rl}
& f(x)-f(a) \sim c \cdot f(-a) \\
\Leftrightarrow & f(x) \& f(a)+c(x-a) \\
\Leftrightarrow & f(a+h) \approx f(a)+c h
\end{array}\right\} \begin{aligned}
& \text { any way } \\
& \text { call } c \text { the } \\
& \text { derivative } \\
& c o f \text { at a) }
\end{aligned}
$$

write $f^{\prime}(0),\left.\frac{d f}{d x}\right|_{x=c,}$.. linear. approximation
(3) Call line $y=f(a)+f^{\prime}(a)(x-a)$ the tangent line (the line tangent to f at $(a, f(a))$).
$\begin{aligned} &(c) \text { See: if } f^{\prime}(a)>0, f \text { increasing } \\ & f^{\prime}(a)<0, f \text { decreasing }\end{aligned}$

Math 100:V02 - WORKSHEET 4 CALCULATING DERIVATIVES

1. Definition of the Derivative

Definition. $f(a+h) \approx f(a)+f^{\prime}(a) h\left(\right.$ or $f^{\prime}(a)=$ $\left.\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}\right)$
(1) Find $f^{\prime}(a)$ if
(a) $f(x)=x^{2}, a=3$.

(b) $f(x)=\frac{1}{x}$, any a.

Date: $23 / 1 / 2024$, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

$$
\begin{aligned}
& \text { (a) } f(x)=x^{3}-2 x \text {, any } a \text { (you may use }(a+h)^{3}= \\
& \left.a^{3}+3 a^{2} h+3 a h^{2}+h^{3}\right)
\end{aligned}
$$

(2) Express the limits as derivatives: $\lim _{h \rightarrow 0} \frac{\cos (5+h)-\cos 5}{h}$, $\lim _{x \rightarrow 0} \frac{\sin x}{x}$

$\lim _{x \rightarrow \infty} \frac{\sin x-\sin 0}{x-0}=\left.\frac{d(\sin \theta)}{d \theta}\right|_{\theta=0}$

Today: compute derivatives.
If f is differentiable (:has a derivative) at levers point of (a, b) sett a derivative function $f^{\prime}(x), d \beta / d x$.

Goal: compute using rules.
Facts $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}, \frac{d}{d x} e^{x}=e^{x}$ "natural bise ot the logarithms:"
2. The tangent Line
(4) (Final, 2015) Find the equation of the line tangent to the function $f(x)=\sqrt{x}$ at $(4,2)$.

$$
f(4)=4^{1 / 2}=2 \cdot \quad f^{\prime}(x)=\frac{d}{d x}\left(x^{\frac{1}{2}}\right)^{1}=\frac{1}{2} x^{-\frac{1}{2}}
$$

So $f^{\prime \prime}(x)=\frac{1}{2} \cdot 4^{\frac{1}{2}}=\frac{1}{4}$
So tangent line is

$$
\begin{aligned}
y & =\frac{1}{4}\left(x-\frac{5}{4}\right)+2^{2} \\
& =2+\frac{1}{4}(x-4) \quad b^{\text {mot }} b^{f(x)}
\end{aligned}
$$

summary : tangent line has slope $f^{\prime}(a) \quad y=f(a)+f^{\prime}(a)$ passes through $(a, f(a)) \quad y=f(a)+d(x)-a)$
(5) (Final 2015) The line $y=4 x+2$ is tangent at $x=$ 1 to which function: $x^{3}+2 x^{2}+3 x, x^{2}+3 x+2$, $2 \sqrt{x+3}+2, x^{3}+x^{2}-x, x^{3}+x+2$, none of the above?
line ha o slope 4, at $x=1$ passed through $(1,6)$

(6) Find the lines of slope 3 tangent to the curve $y=$ $x^{3}+4 x^{2}-8 x+3$.
(7) The line $y=5 x+B$ is tangent to the curve $y=$ $x^{3}+2 x$. What is $B ?$
3. LINEAR APPROXIMATION

Definition. $f(a+h) \approx f(a)+f^{\prime}(a) h$
(8) Estimate
(a) $\star \sqrt{1.2}$
continuity says: $\sqrt{R \cdot 2}$ \& $\sqrt{P}=1$

$$
\begin{aligned}
& \text { let } f(x)=\sqrt{x}=x^{\frac{1}{2}} \text {. Know } f(1) \text {, want } f(1.2) \text {. } \\
& \left.\begin{array}{rl}
f^{\prime}(x)=\frac{1}{2} x^{-\frac{1}{2}}, & f^{\prime}(1)=\frac{1}{2} \text { so } \\
& f(x)=f(1)+\frac{1}{2}(x-1) \\
& f(1+h)=f(1)+\frac{1}{2} b
\end{array}\right\} \text { order } \\
& \text { So } \quad f(1.2) x 1+\frac{1}{2} \cdot 0.2=1.1 \\
& \approx 12 \text { र́ } h
\end{aligned}
$$

$(\mathrm{b}) \star($ Final, 2015) $\sqrt{8}$
(c) $\star\left(\right.$ Final, 2016) $(26)^{1 / 3}$

Let $f(x)=x^{1 / 3} \quad f^{\prime \prime}(x)=\frac{1}{3} x^{-2 / 3}$
$f(27)=3 \quad f^{\prime}(27)=\frac{1}{27}$
so $f(26)=3+\frac{1}{27} \cdot(-1)=2 \frac{26}{27}$

$$
26-27 \text {, or: } 26=27+(-1)
$$

4. ARITHMETIC OF DERIVATIVES
(2) Differentiate

$$
(\mathrm{a}) \star f(x)=6 x^{\pi}+2 x^{e}-x^{7 / 2}
$$

(b) $\star\left(\right.$ Final, 2016) $g(x)=x^{2} e^{x}\left(\right.$ and then also $\left.x^{a} e^{x}\right)$

Diff rules: Know
(1) Linearity of derivative: $(a f+b g)^{\prime}=a f^{\prime}+b g^{\prime}$
(2) product rule $f(f g)^{\prime}=f g^{\prime}+f^{\prime} g$

Why are then true?
Say that near X,

$$
\begin{aligned}
& f(x+h)=f(x)+f^{-}(x) h \\
& g(x+h) \& g(x)+g^{1}(x) h
\end{aligned}
$$

then

$$
\begin{aligned}
& (\alpha f+\beta g)(x+h)=\alpha f(x+h)+\beta g(x+h) \\
& \forall \alpha\left(f(x)+f^{\prime}(x) h\right)+\beta\left(g(x)+\gamma^{\prime}(x) h\right) \\
& \& f \alpha f(x)+\beta f(x)) \rightarrow\left(\alpha f^{\prime}(x)+\beta g^{\prime}(x)\right) h \\
& f(x+h) g(x+h) \sim\left(f(x)+f^{\prime}(x) h\right)\left(g(x)+g^{\prime}(x) h\right) \\
& =(f q)(x)+\left(f^{\prime}(x) f(x)+f(x) q^{\prime}(x)\right) h+ \\
& +f^{\prime}(x) g^{\prime}(x) h^{2} \\
& f A^{\prime} q(x)+\left(\left(f^{\prime} g+g^{\prime} f\right)(x)\right) \cdot h \\
& \text { to } 1{ }^{1 s t} \\
& \text { order in } \\
& \text { Also }\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime}}{g}-\frac{f g^{\prime}}{g^{2}}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}
\end{aligned}
$$

