Math 100, lecture 4, 18/1/2024
Last time: Asymptatics of expressions:
(i) if $f \ll g$ the $f+g \ll g$.
(2) if f(NF, $g \sim \hat{g} \quad f_{g}-f \tilde{s}, \frac{f}{q} \backsim \frac{\tilde{f}}{n}$

$$
f \pm g \backsim \tilde{f} \rightarrow \tilde{s}
$$

\Rightarrow use to compute limits (extract asymptobics, set limit)
Today: derivative.
Idea: set more precise asymptotic of f near $x=0$.
Facts If f is defined by formula at \& near a, have

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Sf true (for any f), say f is continuous at a. (if true for all a in some interval say f is continuous on the interval. Informally continuity meats: if x is close to $a, f(x)$ is close to $f(a)^{\prime \prime}$.

Important case: "gluing functions":
If $f(x)= \begin{cases}g(x) & x>x_{0} \\ h(x) & x<x_{0}\end{cases}$
and a, h continuous through x_{0} then f is continuous when $B\left(x_{0}\right)=f\left(x_{0}\right)=f\left(x_{0}\right)$
Example: $\operatorname{san} f(x)= \begin{cases}a x^{2}+b & x<0 \\ c \cdot \cos x & x>0\end{cases}$
Cclearly continuous at all $a \neq 0$-there defined by cts at 0 iff $a \cdot 0^{2}+b=c \cdot \cos 0$ formula)

$$
\Leftrightarrow \quad b=c=f(0)
$$

The Derivative
Suppose f is continuous at $x=0$, so if π close to a, $f(x)$ is close bo $f(a)$. Q : "how close?"

To understand this, we will look at behaviour of the "distance" $f(x)-f(a)$. This is close to zero. Questions what are the asymptotics of $f(x)-f(a)$ in terms of the small parameter $h=x-a \rightarrow 0$ lin terms \& $h, x=a \neq h, f(x)-f(a)=f(a+h)-f(a))$

Fact: For "most" functions in science: asymptotes is linear.

$$
f(a+h)-f(a) \sim c \cdot h
$$

then call c the derivative of f at a white $f^{\prime}(a)=c,\left.\frac{d f}{d x}\right|_{x=a}=c$. Get:

$$
\begin{aligned}
& f(a+h)-f(a) \sim f^{\prime}(a) h \\
\Rightarrow & \left.f(a+h)<f(a)+f^{\prime}(a) h \quad \text { ("Liner approx" }\right)
\end{aligned}
$$

Use in two ways: H) Given f, by hand find linear approx, read off f^{\prime}.
(2) If have "calculus" $=$ symbolic rules for finding f, can compute linear aby roximation

Or $\quad f(x) \propto f(a)+f^{\prime}(a) \cdot(x-h)$
If $f(x)$ is close to $f(a)-f^{\prime}(a) \cdot(x-h)$
the $\frac{f(x)-f(a)}{x-a} \approx f^{\prime}(a), 80 \quad f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$

$$
\text { "limit definition of derivative" }=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

1. Three views of the derivative
(1) Let $f(x)=x^{2}$, and let $a=2$. Then $(2,4)$ is a point $\boldsymbol{y}=\boldsymbol{x}^{\mathbf{2}} \quad$ on the graph of $y=f(x)$.

(a) Let $\left(x, x^{2}\right)$ be another point on the graph, close to $(2,4)$. What is the slope of the line connecting the two? What is the limit of the slopes as $x \rightarrow 2$?

$$
\text { Slope: } \frac{\Delta y}{\Delta x}=\frac{x^{2}-4}{x-2}=\frac{(x-2)(x+2)}{x-2}=x+2 \rightarrow 4
$$

(b) Let h be a small quantity. What is the asymptotic behaviour of $f(2+h)$ as $h \rightarrow 0$? What about $f(2+h)-f(2) ?$

$$
\begin{aligned}
& f(2+h)=(2+h)^{2}=4+4 h \times h^{2} \underset{h \rightarrow 0}{\rightarrow} 4=f(2) \leftarrow \text { Continuity } \\
& f(2+h)-f(2)=\left(4+9 h+h^{2}\right)-4=9 h+h^{2} v 9 h \Rightarrow f^{\prime}(2)=4 \\
& \text { (c) What is } \lim _{h \rightarrow 0} \frac{(2+h)^{2}-2^{2}}{h} \text { ? } \\
& \left.\lim _{h \rightarrow 0} \frac{f(2+h) \cdot f(2)}{h}=\lim _{h \rightarrow 0} \frac{9 h+h^{2}}{h}=\lim _{h \rightarrow 0} q+h \right\rvert\, \begin{array}{l}
h \\
f(2+h) o s 4+4 h \\
f(x)<4+4(x-2)
\end{array}
\end{aligned}
$$

(d) What is the equation of the line tangent to the graph of $y=f(x)$ at $(2,4)$?
Date: $18 / 1 / 2024$, Worksheet by Lion Silberman. This instagifional inaterial is excluded from the terms of UBC Policy 81.
Line is $y=4+4(x-2)$!

Recap two points of view:
(1) from $f(x)=x^{2}$ fisnive out $f(2+h)=4+4 h+h^{2}$ © $4+43$
\Rightarrow set slope $=$ derivative $=4$, tangent line is $y=4+4(x-2)$
(2) from $f^{\prime}(x)=2 x$ set $f^{\prime}(2)=4$ so tangent line is $y=4+4(x-2)$

We found $f(2+h) \& 4+4 \quad \quad h=x-2$

$$
\Leftrightarrow f(x) \infty 4+4(x-2)
$$

(working about

$$
a=2)
$$

(2) $\star \star$ An enzymatic reaction occurs at rate $k(T)=$ $T(40-T)+10 T$ where T is the temperature in degrees celsius. The current temperature of the solotion is $20^{\circ} \mathrm{C}$. Should we increase or decrease the temperature to increase the reaction rate?

$$
\begin{aligned}
k(20) & =20 \cdot(40-20)+10 \cdot 20=600 \\
k(20+h) & =(20+h)(40-(20+h))+10(20+h) \\
& =(20+h)(20-h)+200+10 h \quad \text { to linear } \\
& =600+10 h-h^{2} \& 600+10 h \quad \text { order in }
\end{aligned}
$$

$\Rightarrow k$ increasing at 20 , wants to raise temperature

$$
\sin (h)=h-\frac{h^{3}}{6}+\frac{h^{5}}{120}-\frac{h^{7}}{5080}+\cdots
$$

want sloge of $\sin \theta$ at $\theta=0: 1$

2. Definition of the derivative

Definition. $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$ or $f(a+h) \approx$ $f(a)+f^{\prime}(a) h$
(3) Find $f^{\prime}(a)$ if
(a) $\star f(x)=x^{2}, a=3$.
(b) $\star \star f(x)=\frac{1}{x}$, any a.
(c) $\star \star f(x)=x^{3}-2 x$, any a (you may use $(a+h)^{3}=$ $\left.a^{3}+3 a^{2} h+3 a h^{2}+h^{3}\right)$.
(4) $\star \star$ Express the limits as derivatives: $\lim _{h \rightarrow 0} \frac{\cos (5+h)-\cos 5}{h}$, $\lim _{x \rightarrow 0} \frac{\sin x}{x}$
(5) $\star \star \star$ (Final, 2015, variant - gluing derivatives) Is the function

$$
f(x)= \begin{cases}x^{2} & x \leq 0 \\ x^{2} \cos \frac{1}{x} & x>0\end{cases}
$$

$$
\text { differentiable at } x=0 ?
$$

3. The tangent Line

(6) \star (Final, 2015) Find the equation of the line tangent to the function $f(x)=\sqrt{x}$ at $(4,2)$.
(7) $\star \star$ (Final 2015) The line $y=4 x+2$ is tangent at $x=1$ to which function: $x^{3}+2 x^{2}+3 x, x^{2}+3 x+2$, $2 \sqrt{x+3}+2, x^{3}+x^{2}-x, x^{3}+x+2$, none of the above?
(8) $\star \star \star$ Find the lines of slope 3 tangent to the curve $y=x^{3}+4 x^{2}-8 x+3$.
(9) $\star \star \star$ The line $y=5 x+B$ is tangent to the curve $y=x^{3}+2 x$. What is B ?

4. LINEAR APPROXIMATION

Definition. $f(a+h) \approx f(a)+f^{\prime}(a) h$
(10) Estimate
(a) $\star \sqrt{1.2}$
(b) $\star($ Final, 2015) $\sqrt{8}$
(c) $\star($ Final 2016$)(26)^{1 / 3}$

