Math 100, lectare 3
Lest time: Aspimptotics of expressions.
Idea: If (in some limit for then $f+g$ an g.
Example: As $x \rightarrow \infty, 1-x^{2}+x^{4} \backsim x^{4}$
hear $0(a s x \rightarrow 0) \quad 1-x^{2}+x^{4}<1$
(to second order in $x, \quad 1-x^{2}+x^{4}=1-x^{2}$)
("leading order" = most important term)
("second order" = vanishing like x^{2} at most)
Today: (1) 们 $f \sim \bar{f}, g u \bar{g}$ the foam \bar{g} $\frac{f}{g} \backsim \frac{f}{s}$
(2) Asymptotics at $a \neq 0, \infty$
(3) Limits

Tutorials
APSC: Thu 11.12 , ORCH 4062
Science: Tue 14-15, ORCH 3062

Math 100:V02 - WORKSHEET 2 LIMITS

1. ASYMPTOTICS

(1) How does the each expression behave when x is large? small? what is x is large but negative? Sketch a plot (a) $a x^{3}-b x^{5}(a, b>0)$
(b) $e^{x}-x^{4}$

As $x \rightarrow \infty$

As $x \rightarrow 0 \quad e^{x}-x^{4} \sim 1 \quad\left(e^{x} \sim 1, x^{4} \sim x^{4}\right)$
As $x \rightarrow-\infty$ e $e^{x}-x^{4}-x^{4}$ (e^{x} is decaying)
remarks: $\lim _{x \rightarrow \infty} e^{x}-x^{4}=\lim _{x \rightarrow \infty} e^{x} \geq \infty$

Date: $16 / 1 / 2024$, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.
(2) Say each expression in words, and then determine its asymptotic near 0 and near ∞.
(a) $e^{|x-5|^{3}}$

The exponential of the cube of the absolute value of x minus 5 .
Near $0, e^{(x-5)^{3}} \sim e^{125}$
Near $\alpha, \quad x-5 \sim x,|x-5| \backsim x,|x-5|^{3} \backsim x^{3}$

$$
e^{|x-5|^{3}}=e^{x^{3}-15 x^{2}+75 x-125}=e^{x^{3}} \cdot e^{-15 x^{2}} \cdot e^{75 x} \cdot e^{-125}
$$

x large warnisis not $e^{x^{3}}$. Call factor matter
(b) $\frac{1+x}{1+2 x-x^{2}}$ when multiplying)

As $x \rightarrow \infty \quad 1+x \cos$

$$
\begin{aligned}
& \text { Ad } x \rightarrow \infty \quad \frac{1+x \sim x}{122 x-x^{2}} s-x^{2}
\end{aligned} \Rightarrow \frac{1+}{1+2}
$$

As $x \rightarrow 0 \frac{1+x}{1+2 x-x^{2}} \sim \frac{1}{1}=1$
(c) $\frac{e^{x}+A \sin x}{e^{x}-x^{2}} \quad$ As $x \rightarrow \infty, \frac{e^{x}+A \sin x}{e^{x}-x^{2}} \backsim \frac{e^{x}}{e^{x}} \sim 1$

As $x \rightarrow 0 \frac{e^{x}+A \sin x}{e^{x}-x^{2}} \sim \frac{1}{1} \sim 1$
As $x \rightarrow-\infty$ (trickn): $e^{x}+A \sin x$ sometiones

$$
e^{x}-x^{2} m-x^{2}
$$

$$
e^{x}<A \sin x
$$

$s 0$ metimes $e^{x}>A \sin x$
So $\quad \frac{e^{x}+A \sin x}{e^{x}-x^{2}} \sim-\frac{e^{x}+A \sin x}{x^{2}} \quad \begin{aligned} & (\text { as } x \rightarrow-\infty) \\ & \text { description }\end{aligned}$ description)
(d) $\frac{A e^{r t}+B e^{-s t}}{t+t^{2}}$ where $r, s>0$ and $A, B \neq 0$.

As $t \rightarrow \infty \quad \frac{A e^{r t}+B e^{-s t}}{t+t^{2}} \sim \frac{A e^{r t}}{t^{2}}$
As $t \rightarrow-\infty \frac{A e^{r t}+B e^{-s t}}{t+t^{2}} \sim \frac{B e^{-s t}}{t^{2}}$
As $t \rightarrow 0 \frac{A e^{r t}+B e^{-s t}}{t+t^{2}} \sim \frac{A+B}{t} \quad\left(e^{r t} \sim 1\right)$

$$
\left(\lim _{t \rightarrow \infty}(\text { apression })=\lim _{t \rightarrow \infty} \frac{A e^{r t}}{t^{2}}=\infty \quad\left(e^{r t} \text { bents } t^{2}\right)\right)
$$

(3) Find the asymptotics of the indicated expression at the given point.
(a) $\frac{x^{5}+A x^{3}+x}{B x^{4}-x^{2}}$ as $x \rightarrow 0$.
(b) $\frac{x^{2}+1}{x-4}$ as $x \rightarrow 3$.
(c) $f(x)=\frac{x^{2}+1}{x-4}$ as $x \rightarrow 4$.

Small parameter $x-4$

$$
\frac{x^{2}+1}{x-9} \backsim \frac{17}{x-4}
$$

(d) $f(x)=x^{2}-1$ as $x \rightarrow 1$.

A $x \rightarrow 1, \quad x^{2}-1=(x-1)(x+1) \sim 2(x-1)$
Or:

$$
\text { Or: } \begin{aligned}
& x^{2}-1=((x-1)+1)^{2}-1=(x-1)^{2}+2(x-1)+1-1 \\
&=2(x-1)+(x-1)^{2} \sim 2(x-1) \\
& \text { rebasing } x^{2}-1 \quad a_{0} x \rightarrow \rightarrow 0,(\text { small } 1)^{2} \ll(\text { small })
\end{aligned}
$$ at 1

or: let $u=x \rightarrow 1$ then $x=u+7$ so $a s u \rightarrow 0$

$$
x^{2}-1=(u+1)^{2}-1=u^{2}+2 u+1-1=2 u+u^{2} \operatorname{s} 2 u=2(x-1)
$$

limits the value the function "would like" to have.

Independent of actual value.

$$
\lim _{x \rightarrow a} f(x)=b, ; f(a)=4
$$

Promise: If f is defines by formula at \& near a, then $\lim _{x \rightarrow a} f(x)=f(a)$
2. Limits
(4) Either evaluate the limit or explain why it does not exist. Sketching a graph might be helpful.
(a) $\lim _{x \rightarrow 5}\left(x^{3}-x\right)=5^{3}-5=125-5=120$

$$
\left.\left.\begin{array}{l}
\text { (b) } \lim _{x \rightarrow 1} f(x) \text { where } f(x)= \begin{cases}\sqrt{x} & 0 \leq x<1 \\
3 & x=1 \\
2-x^{2} & x>1\end{cases} \\
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \sqrt{x}=\sqrt{1}=1 \\
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} 2-\mathbf{x}^{2}=2-\boldsymbol{l}^{2}=1
\end{array}\right\} \Rightarrow \lim _{x \rightarrow 1} f(x)=1 .\right\} \begin{array}{ll}
\\
\text { (c) } \lim _{x \rightarrow 1} f(x) \text { where } f(x)= \begin{cases}\sqrt{x} & 0 \leq x<1 \\
1 & x=1 \\
4-x^{2} & x>1\end{cases}
\end{array}
$$

(5) Let $f(x)=\frac{x-3}{x^{2}+x-12}$.
(a) (Final 2014) What is $\lim _{x \rightarrow 3} f(x)$?
(b) What about $\lim _{x \rightarrow-4} f(x)$?
(6) Evaluate
(a) $\lim _{x \rightarrow \infty} \frac{e^{x}+A \sin x}{e^{x}-x^{2}}$
(b) $\lim _{x \rightarrow 0} \frac{e^{x}+A \sin x}{e^{x}-x^{2}}$
(c) $\lim _{x \rightarrow-\infty} \frac{e^{x}+A \sin x}{e^{x}-x^{2}}$
(7) Evaluate
(a) $\lim _{x \rightarrow 2} \frac{x+1}{4 x^{2}-1}$
(b) (Final, 2014) $\lim _{x \rightarrow-3} \frac{x+2}{x+3}$.
(c) $\lim _{x \rightarrow 1} \frac{e^{x}(x-1)}{x^{2}+x-2}$
(d) $\lim _{x \rightarrow-2^{-}} \frac{e^{x}(x-1)}{x^{2}+x-2}$
(e) $\lim _{x \rightarrow 1} \frac{1}{(x-1)^{2}}$
(f) $\lim _{x \rightarrow 4} \frac{\sin x}{|x-4|}$
(g) $\lim _{x \rightarrow \frac{\pi^{+}}{2}} \tan x, \lim _{x \rightarrow \frac{\pi}{2}} \tan x$.

3. Limits AT infinity

(6) Evaluate
(a) $\lim _{x \rightarrow \infty} \frac{x^{2}+1}{x-3}$
(b) (Final, 2015) $\lim _{x \rightarrow-\infty} \frac{x+1}{x^{2}+2 x-8}$
(c) (Quiz, 2015) $\lim _{x \rightarrow-\infty} \frac{3 x}{\sqrt{4 x^{2}+x}-2 x}$

