Math 100, lectare 3 Last time: Asymptotics of upressions. Idea: If (in some limit fag then \$+g ng. Example: A8 x-100, 1-x2+x4 ~ x4 hear $0 (a_0 \times -0) [-\chi^2 + \chi^4 \infty]$ (to second order in x, $1-\chi^2 + \chi^0 = 1-\chi^2$) ("leading order" = most important term) ("second Order" = vanishing like x² at most) Today: (1) If fr F, 3rg the fgr Fg $\frac{1}{9}$ $\sim \frac{1}{9}$ (2) Asymptotics at a +0,00 (3) Limits Jutorials APSC: The 11-12, OPCH 4-062 Science: The 19-15, ORCH 3062

Math 100:V02 – WORKSHEET 2 LIMITS

1. Asymptotics

(1) How does the each expression behave when x is large? small? what is x is large but negative? Sketch a plot
(a) ax³ - bx⁵ (a, b > 0)

Date: 16/1/2024, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

- (2) Say each expression in words, and then determine its asymptotics near 0 and near ∞.
 (a) e^{|x-5|³}
- The exponential of the cube of the absolute value & x minks S. Noar 0, e^{[x-5]³}, 125 Near 01, X-50X 1X-5) ~X 1X-51 ~ X3 $e^{\{x-s\}^{2}} = e^{x^{2} - 15x^{2} + 75x - 125} = e^{x^{3}} - 15x^{2} + 95x - 125}$ x large warning not ex3 (all factor matter when multiphying) (b) $\frac{1+x}{1+2x-x^2}$ $\frac{|+\times \infty \chi}{|+2\chi - \chi^2 - \chi^2} \Rightarrow \frac{|+\times}{|+2\chi - \chi^2} \rightarrow \frac{\chi}{-\chi^2} = \frac{1}{\chi}$ As x 100 $\begin{bmatrix} 0r & \frac{1+\chi}{1+2\chi-\chi^2} & \frac{\chi}{-\chi^2} & -\frac{1}{\chi} \end{bmatrix}$ AS X-10 1+X ~ 1 =1

(c)
$$\frac{e^x + 4\sin x}{e^x - x^2}$$
 Ar $x \Rightarrow aa$, $\frac{e^x}{e^x - x^2} = \frac{e^x}{e^x} = a$)
As $x \Rightarrow 0$ $\frac{e^x}{e^x - x^2} = \frac{1}{1} = 1$
As $x \Rightarrow -aa$ (trijcky) : $e^x + Asinx$ Sillipse times
 $e^x - x^2 = -x^2$, $e^x - Asina$
sometimes $e^x - Asina$
sometimes $e^x - Asina$
 $e^x - Asina$
(a) $\frac{Ae^{rt} + Be^{-st}}{t + t^2}$ where $r, s > 0$ and $A, B \neq 0$.
As the as $\frac{Ae^{rt} + Be^{-st}}{t + t^2} = \frac{Ae^{rt}}{t^2}$
As the as $\frac{Ae^{rt} + Be^{-st}}{t + t^2} = \frac{Ae^{rt}}{t^2}$
As the as $\frac{Ae^{rt} + Be^{-st}}{t + t^2} = \frac{Ae^{rt}}{t^2}$
As the as $\frac{Ae^{rt} + Be^{-st}}{t^2} = \frac{Ae^{rt}}{t^2}$
As the as the as $\frac{Ae^{rt} + Be^{-st}}{t^2} = a^{rt}$
(e^{rt} berts t^2))

(3) Find the asymptotics of the indicated expression at the given point.

(a)
$$\frac{x^3 + Ax^3 + x}{Bx^4 - x^2}$$
 as $x \to 0$.

(b)
$$\frac{x^2+1}{x-4}$$
 as $x \to 3$.

(c)
$$f(x) = \frac{x^2+1}{x-4}$$
 as $x \to 4$.
Small parameter $\chi - 4$
 $\chi^2 + 1$ or $\chi - 4$
 $\chi^2 - 9$ or $\chi - 4$

2. LIMITS

(4) Either evaluate the limit or explain why it does not exist. Sketching a graph might be helpful.

(b)
$$\lim_{x\to 1} f(x)$$
 where $f(x) = \begin{cases} \sqrt{x} & 0 \le x < 1\\ 3 & x = 1\\ 2 - x^2 & x > 1 \end{cases}$
 $\lim_{x\to 1^-} f(x) = \lim_{x\to 1^-} \sqrt{x} = \sqrt{1} = 1$
 $\lim_{x\to 1^+} f(x) = \lim_{x\to 1^+} \sqrt{x} = \sqrt{1} = 1$
 $\lim_{x\to 1^+} f(x) = \lim_{x\to 1^+} \sqrt{x} = \sqrt{1} = 1$
 $\lim_{x\to 1^+} f(x) = \lim_{x\to 1^+} \sqrt{x} = \sqrt{1} = 1$

(c)
$$\lim_{x \to 1} f(x)$$
 where $f(x) = \begin{cases} \sqrt{x} & 0 \le x < 1\\ 1 & x = 1\\ 4 - x^2 & x > 1 \end{cases}$.

(5) Let
$$f(x) = \frac{x-3}{x^2+x-12}$$
.
(a) (Final 2014) What is $\lim_{x\to 3} f(x)$?

(b) What about $\lim_{x\to -4} f(x)$?

(6) Evaluate
(a)
$$\lim_{x \to \infty} \frac{e^x + A \sin x}{e^x - x^2}$$

(b)
$$\lim_{x\to 0} \frac{e^x + A \sin x}{e^x - x^2}$$

(c)
$$\lim_{x \to -\infty} \frac{e^x + A \sin x}{e^x - x^2}$$

(7) Evaluate
(a)
$$\lim_{x \to 2} \frac{x+1}{4x^2-1}$$

(b) (Final, 2014) $\lim_{x \to -3^+} \frac{x+2}{x+3}$.

(c)
$$\lim_{x \to 1} \frac{e^x(x-1)}{x^2+x-2}$$

(d)
$$\lim_{x \to -2^{-}} \frac{e^x(x-1)}{x^2 + x - 2}$$

(e)
$$\lim_{x \to 1} \frac{1}{(x-1)^2}$$

(f)
$$\lim_{x \to 4} \frac{\sin x}{|x-4|}$$

(g)
$$\lim_{x \to \frac{\pi}{2}^+} \tan x$$
, $\lim_{x \to \frac{\pi}{2}^-} \tan x$.

3. LIMITS AT INFINITY

(6) Evaluate

(a) $\lim_{x \to \infty} \frac{x^2 + 1}{x - 3}$

(b) (Final, 2015) $\lim_{x \to -\infty} \frac{x+1}{x^2+2x-8}$

(c) (Quiz, 2015)
$$\lim_{x \to -\infty} \frac{3x}{\sqrt{4x^2 + x} - 2x}$$