Math 100A – WORKSHEET 13 MULTIVARIABLE OPTIMIZATION

1. CRITICAL POINTS; MULTIVARIABLE OPTIMIZATION

Definition. We say the point (x_0, y_0) is a *critical point* for the function f = f(x, y) if f is defined in a neighbourhood of the point and $\begin{cases} \frac{\partial f}{\partial x}(x_0, y_0) = 0\\ \frac{\partial f}{\partial y}(x_0, y_0) = 0 \end{cases}$

(1) *How many critical points does $f(x, y) = x^2 - x^4 + y^2$ have?

(2) *Find the critical points of $f(x,y) = x^2 - x^4 + xy + y^2$.

(3) (MATH 105 Final, 2013) \star Find the critical points of $f(x, y) = xye^{-2x-y}$.

Date: 29/11/2023, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

- (4) WARNING: in general checking along the axes only is not enough to determine if a point is a local minimum or maximum. For more on this look up the multivariable second derivative test in the reference book.
 - (a) $\star\star$ Let $f(x, y) = 4x^2 + 8y^2 + 7$. Find the critical point(s) of f(x, y), and determine (if possible) whether each critical point corresponds to a local maximum, local minimum, or neither ("saddle point").

(b) (MATH 105 Final, 2017) ****** Let $f(x, y) = -4x^2 + 8y^2 - 3$. Find the critical point(s) of f(x, y), and determine (if possible) whether each critical point corresponds to a local maximum, local minimum, or neither ("saddle point").

(5) \star Find the critical points of $(7x + 3y + 2y^2)e^{-x-y}$.

2. Optimization

Fact. The maximum and minimum of a function must (if they exist) occur either at (1) a critical point; (2) a singular point; (3) the boundary.

(6) ******Find the minimum of $f(x, y) = 2x^2 + 3y^2 - 4x - 5$: (a) on the rectangle $0 \le x \le 2, -1 \le y \le 1$.

(b) on the rectangle $2 \le x \le 3, -1 \le y \le 1$.

(7) Find the maximum of $(7x + 3y + 2y^2)e^{-x-y}$ for $x \ge 0, y \ge 0$,

- (8) A company can make widgets of varying quality. The cost of making q widgets of quality t is C = 3t² + √t ⋅ q. At price p the company can sell q = t-p/3 widgets.
 (a) Write an expression for the profit function f(q,t).

 - (b) How many widgets of what quality should the company make to maximize profits?

(9) Find the maximum and minimum values of $f(x, y) = -x^2 + 8y$ in the disc $R = \{x^2 + y^2 \le 25\}$.

(10) (MATH 105 final, 2015) Find the maximum and minimum values of $f(x, y) = (x - 1)^2 + (y + 1)^2$ in the disc $R = \{x^2 + y^2 \le 4\}$.

- (11) (The inequality of the means) We calculate the maximum of f(x, y, z) = xyz on the domain x+y+z = 1, $x, y, z \ge 0$.
 - (a) Explain why it's enough to find the maximum of g(x,y) = xy(1-x-y) on the domain $x \ge 0, y \ge 0, x+y \le 1$.

(b) Find the critical points of g in the interior of the domain, and the values of g at those points.

(c) What is the boundary of the domain of g? What is the maximum there?

(d) What is the maximum of g?

(e) Show that for all $X, Y, Z \ge 0$ we have $(XYZ)^{1/3} \le \frac{X+Y+Z}{3}$ (the "inequality of the means"). Hint: define $x = \frac{X}{X+Y+Z}, y = \frac{Y}{X+Y+Z}, z = \frac{Z}{X+Y+Z}$ and apply the previous result. **Fact** (Method of Lagrange Multipliers). Let f(x, y) and G(x, y) be two functions (the objective function and the constraint). Suppose that (x_0, y_0) is a local maximum or minimum of frestricted to the curve G(x, y) = 0. Then there is a number λ (the "Lagrange multiplier") so that the following equations are satisfied:

$$\begin{cases} \frac{\partial f}{\partial x}(x_0, y_0) = \lambda \frac{\partial G}{\partial x}(x_0, y_0) \\ \frac{\partial f}{\partial y}(x_0, y_0) = \lambda \frac{\partial G}{\partial y}(x_0, y_0) \\ G(x_0, y_0) = 0 \end{cases}$$

(11) (MATH 105 final, 2017) Use the mConstrained optimization ethod of Lagrange Multipliers to find the maximum value of the utility function $U = f(x, y) = 16x^{\frac{1}{4}}y^{\frac{3}{4}}$, subject to the constraint G(x, y) = 50x + 100y - 500,000 = 0, where $x \ge 0$ and $y \ge 0$.

(12) Labour-Leisure model: a person can choose to spend L hours a day not working ("leisure"), working 24 - L hours with way w. Suppose their fixed income is V dollars per day. Their consumption of goods is them C = w(24 - L) + V, equivalenly C + wL = 24w + V (here C, L are variables while w, V are constants). If their utility function is U = U(C, L) find a system of equations for maximum utility.