Math 100A - WORKSHEET 13 MULTIVARIABLE OPTIMIZATION

1. CRitical points; multivariable optimization

Definition. We say the point $\left(x_{0}, y_{0}\right)$ is a critical point for the function $f=f(x, y)$ if f is defined in a neighbourhood of the point and

$$
\left\{\begin{array}{l}
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)=0 \\
\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)=0
\end{array}\right.
$$

(1) \star How many critical points does $f(x, y)=x^{2}-x^{4}+y^{2}$ have?
(2) \star Find the critical points of $f(x, y)=x^{2}-x^{4}+x y+y^{2}$.
(3) (MATH 105 Final, 2013) \star Find the critical points of $f(x, y)=x y e^{-2 x-y}$.

[^0](4) WARNING: in general checking along the axes only is not enough to determine if a point is a local minimum or maximum. For more on this look up the multivariable second derivative test in the reference book.
(a) $\star \star$ Let $f(x, y)=4 x^{2}+8 y^{2}+7$. Find the critical point(s) of $f(x, y)$, and determine (if possible) whether each critical point corresponds to a local maximum, local minimum, or neither ("saddle point").
(b) (MATH 105 Final, 2017) $\star \star$ Let $f(x, y)=-4 x^{2}+8 y^{2}-3$. Find the critical point(s) of $f(x, y)$, and determine (if possible) whether each critical point corresponds to a local maximum, local minimum, or neither ("saddle point").
(5) \star Find the critical points of $\left(7 x+3 y+2 y^{2}\right) e^{-x-y}$.

2. Optimization

Fact. The maximum and minimum of a function must (if they exist) occur either at (1) a critical point; (2) a singular point; (3) the boundary.
(6) $\star \star$ Find the minimum of $f(x, y)=2 x^{2}+3 y^{2}-4 x-5$:
(a) on the rectangle $0 \leq x \leq 2,-1 \leq y \leq 1$.
(b) on the rectangle $2 \leq x \leq 3,-1 \leq y \leq 1$.
(7) Find the maximum of $\left(7 x+3 y+2 y^{2}\right) e^{-x-y}$ for $x \geq 0, y \geq 0$,
(8) A company can make widgets of varying quality. The cost of making q widgets of quality t is $C=3 t^{2}+\sqrt{t} \cdot q$. At price p the company can sell $q=\frac{t-p}{3}$ widgets.
(a) Write an expression for the profit function $f(q, t)$.
(b) How many widgets of what quality should the company make to maximize profits?
(9) Find the maximum and minimum values of $f(x, y)=-x^{2}+8 y$ in the disc $R=\left\{x^{2}+y^{2} \leq 25\right\}$.
(10) (MATH 105 final, 2015) Find the maximum and minimum values of $f(x, y)=(x-1)^{2}+(y+1)^{2}$ in the disc $R=\left\{x^{2}+y^{2} \leq 4\right\}$.
(11) (The inequality of the means) We calculate the maximum of $f(x, y, z)=x y z$ on the domain $x+y+z=$ $1, x, y, z \geq 0$.
(a) Explain why it's enough to find the maximum of $g(x, y)=x y(1-x-y)$ on the domain $x \geq 0, y \geq 0, x+y \leq 1$.
(b) Find the critical points of g in the interior of the domain, and the values of g at those points.
(c) What is the boundary of the domain of g ? What is the maximum there?
(d) What is the maximum of g ?
(e) Show that for all $X, Y, Z \geq 0$ we have $(X Y Z)^{1 / 3} \leq \frac{X+Y+Z}{3}$ (the "inequality of the means"). Hint: define $x=\frac{X}{X+Y+Z}, y=\frac{Y}{X+Y+Z}, z=\frac{Z}{X+Y+Z}$ and apply the previous result.

Fact (Method of Lagrange Multipliers). Let $f(x, y)$ and $G(x, y)$ be two functions (the objective function and the constraint). Suppose that $\left(x_{0}, y_{0}\right)$ is a local maximum or minimum of frestricted to the curve $G(x, y)=0$. Then there is a number λ (the "Lagrange multplier") so that the following equations are satisfied:

$$
\left\{\begin{array}{l}
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)=\lambda \frac{\partial G}{\partial x}\left(x_{0}, y_{0}\right) \\
\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)=\lambda \frac{\partial G}{\partial y}\left(x_{0}, y_{0}\right) \\
G\left(x_{0}, y_{0}\right)=0
\end{array}\right.
$$

(11) (MATH 105 final, 2017) Use the mConstrained optimizationethod of Lagrange Multipliers to find the maximum value of the utility function $U=f(x, y)=16 x^{\frac{1}{4}} y^{\frac{3}{4}}$, subject to the constraint $G(x, y)=$ $50 x+100 y-500,000=0$, where $x \geq 0$ and $y \geq 0$.
(12) Labour-Leisure model: a person can choose to spend L hours a day not working ("leisure"), working $24-L$ hours with way w. Suppose their fixed income is V dollars per day. Their consumption of goods is them $C=w(24-L)+V$, equivalenly $C+w L=24 w+V$ (here C, L are variables while w, V are constants). If their utility function is $U=U(C, L)$ find a system of equations for maximum utility.

[^0]: Date: 29/11/2023, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

