Math 100A – WORKSHEET 10 DIFFERENTIAL EQUATIONS

1. DIFFERENTIAL EQUATIONS

- (1) For each equation: Is y = 3 a solution? Is y = 2 a solution? What are *all* the solutions? $y^2 = 4$; $y^2 = 3y$
- (2) For each equation: Is $y(x) = x^2$ a solution? Is $y(x) = e^x$ a solution?

$$\frac{dy}{dx} = y$$
 ; $\left(\frac{dy}{dx}\right)^2 = 4y$

- (3) Which of the following (if any) is a solution of $\frac{dz}{dt} + t^2 1 = z$ (challenge: find more solutions): A. $z(t) = t^2$; B. $z(t) = t^2 + 2t + 1$
- (4) Which of the following (if any) is a solution of $\frac{dy}{dx} = \frac{x}{y}$ A. y = -x; B. y = x + 5 C. $y = \sqrt{x^2 + 5}$
- (5) The balance of a bank account satisfies the differential equation $\frac{dy}{dt} = 1.04y$ (this represents interest of 4% compounded continuously). Sketch the solutions to the differential equation. What is the solution for which y(0) = \$100?
- (6) Suppose $\frac{dy}{dx} = ay$, $\frac{dz}{dx} = bz$. Can you find a differential equation satisfied by $w = \frac{y}{z}$? Hint: calculate $\frac{dw}{dx}$.

Date: 8/11/2023, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

2. Solutions by massaging and ansatze

(7) For which value of the constant ω is $y(t) = \sin(\omega t)$ a solution of the oscillation equation $\frac{d^2y}{dt^2} + 4y = 0$?

(8) (The quantum harmonic oscillator) For which value of the constants A, B (with B > 0) does the function $f(x) = Axe^{-Bx^2}$ satisfy $-f'' + x^2f = 3f$? What if we also insist that f(1) = 1?

(9) Consider the equation dy/dt = a(y - b).
(a) Define a new function u(t) = y(t) - b. What is the differential equation satisfied by u?

(b) What is the general solution for u(t)?

(c) What is the general solution for y(t)?

(d) Suppose a < 0. What is the asymptotic behaviour of the solution as $t \to \infty$?

(e) Suppose we are given the *initial value* y(0). What is C? What is the formula for y(t) using this?

(10) Example: Newton's law of cooling. Suppose we place an object of temperature T(0) in an environment of temperature T_{env} . It turns out that a good model for the temperature T(t) of the object at time t is

$$\frac{dT}{dt} = -k\left(T - T_{\rm env}\right)$$

where k > 0 is a positive constant.

- (a) Suppose $T(t) > T_{env}$. Is T'(t) positive or negative? What if $T(t) < T_{env}$? Explain this in words.
- (b) A body is found at 1:30am and its temperature is measured to be 32.5°C. At 2:30am its temperature is found to be 30.3°C. The temperature of the room in which the body was found is measured to be 20°C and we have no reason to believe the ambient temperature has changed. What was the time of death?
- (11) A body falling through the air is at height y(t) at time t where y(t) satisfies the differential equation

$$\frac{d^2y}{dt^2} = -g + \kappa \left(\frac{dy}{dt}\right)^2$$

Here g is the acceleration due to gravity and κ is the *drag coefficient*.

- (a) Write the differential equation satisfied by the velocity $v = \frac{dy}{dt}$.
- (b) This differential equation has a *fixed point* (also known as a *steady state*): find the value u (called the "terminal velocity") such that the constant function $v(t) \equiv u$ is a solution.
- (c) Define the hyperbolic trigonometric functions $\cosh x = \frac{e^x + e^{-x}}{2}$, $\sinh x = \frac{e^x e^{-x}}{2}$, and $\tanh x = \frac{\sinh x}{\cosh x}$. Check that $(\cosh x)' = \sinh x$, $(\sinh x)' = \cosh x$ and that $(\tanh x)' = 1 \tanh^2 x$.
- (d) Find the values of A, α for which

$$v = -A \tanh\left(\alpha(t - t_0)\right)$$

solves the differential equation.

(e) Show that $\lim_{x\to\infty} \tanh x = 1$ and conclude that v(t) indeed converges to the terminal velocity as $t \to \infty$.