Math 100A - SOLUTIONS TO WORKSHEET 10 DIFFERENTIAL EQUATIONS

1. Differential equations

(1) For each equation: Is $y=3$ a solution? Is $y=2$ a solution? What are all the solutions?

$$
y^{2}=4 \quad ; \quad y^{2}=3 y
$$

Solution: Plugging in 2 we have $2^{2}=4$ in the first equation but $2^{2} \neq 3 \cdot 2$. Plugging in 3 we have $3^{2} \neq 4$ but $3^{2}=3 \cdot 3$. The solutions to the first equations are $\{ \pm 2\}$, to the second $\{0,3\}$.
(2) For each equation: Is $y(x)=x^{2}$ a solution? Is $y(x)=e^{x}$ a solution?

$$
\frac{d y}{d x}=y \quad ; \quad\left(\frac{d y}{d x}\right)^{2}=4 y
$$

Solution: Plugging in $y=x^{2}$ into the equations we have $2 x \neq x^{2}$ but $(2 x)^{2}=2 \cdot x^{2}$ is true. Plugging in e^{x} into the equations we see $e^{x}=e^{x}$ but $\left(e^{x}\right)^{2}=e^{2 x} \neq 4 e^{x}$.
(3) Which of the following (if any) is a solution of $\frac{d z}{d t}+t^{2}-1=z$ (challenge: find more solutions):

$$
\begin{array}{ll}
\text { A. } z(t)=t^{2} ; & \text { B. } z(t)=t^{2}+2 t+1
\end{array}
$$

Solution: $2 t+t^{2}-1 \neq t^{2}$ but $(2 t+2)+t^{2}-1=t^{2}+2 t+1$ so only B is a solution. If w is another solution them we have

$$
\begin{aligned}
& \frac{d w}{d t}+t^{2}-1=w \\
& \frac{d z}{d t}+t^{2}-1=z
\end{aligned}
$$

and subtracting the two equations we get $\frac{d(w-z)}{d t}=w-z$ so $w-z=C e^{t}$ and $w(t)=C e^{t}+t^{2}+2 t+1$ for any constant t.
(4) Which of the following (if any) is a solution of $\frac{d y}{d x}=\frac{x}{y}$
A. $y=-x$;
B. $y=x+5$
C. $y=\sqrt{x^{2}+5}$

Solution: $\quad \frac{d(-x)}{d x}=-1=\frac{x}{(-x)}$ but $\frac{d(x+5)}{d x}=1 \neq \frac{x}{x+5}$ and $\frac{d \sqrt{x^{2}+5}}{d x}=\frac{2 x}{2 \sqrt{x^{2}+5}}=\frac{x}{\sqrt{x^{2}+5}}$ so only A, C are solutions. for any constant t.
(5) The balance of a bank account satisfies the differential equation $\frac{d y}{d t}=1.04 y$ (this represents interest of 4% compounded continuously). Sketch the solutions to the differential equation. What is the solution for which $y(0)=\$ 100$?

Solution: The solutions are $C e^{1.04 t}$ for arbitrary C. The particular solution is $100 e^{1.04 t}$ dollars.
(6) Suppose $\frac{d y}{d x}=a y, \frac{d z}{d x}=b z$. Can you find a differential equation satisfied by $w=\frac{y}{z}$? Hint: calculate $\frac{d w}{d x}$.

Solution: $\quad w^{\prime}=\left(\frac{y}{z}\right)^{\prime}=\frac{y^{\prime} z-y z^{\prime}}{z^{2}}=\frac{a y z-y b z}{z^{2}}=(a-b) \frac{y}{z}=(a-b) w$ so the equation is $\frac{d w}{d x}=(a-b) w$.

2. Solutions by massaging and ansatze

(7) For which value of the constant ω is $y(t)=\sin (\omega t)$ a solution of the oscillation equation $\frac{d^{2} y}{d t^{2}}+4 y=0$?

Solution: $\quad(\sin (\omega t))^{\prime}=\omega \cos \omega t$ so $(\sin (\omega t))^{\prime \prime}=-\omega^{2} \sin (\omega t)$ so

$$
(\sin (\omega t))^{\prime \prime}=-4(\sin (\omega t))
$$

iff $\omega^{2}=4$, that is iff $\omega= \pm 2$.
(8) (The quantum harmonic oscillator) For which value of the constants A, B (with $B>0$) does the function $f(x)=A x e^{-B x^{2}}$ satisfy $-f^{\prime \prime}+x^{2} f=3 f$? What if we also insist that $f(1)=1$?

Solution: $\quad f^{\prime}=A e^{-B x^{2}}-2 A B x^{2} e^{-B x^{2}}$ so $f^{\prime \prime}=-6 A B x e^{-B x^{2}}+4 A B^{2} x^{3} e^{-B x^{2}}$ and

$$
\begin{aligned}
-f^{\prime \prime}+x^{2} f & =6 A B x e^{-B x^{2}}+\left(A x^{3} e^{-B x^{2}}-4 A B^{2} x^{3} e^{-B x^{2}}\right) \\
& =6 A B x e^{-B x^{2}}+A\left(1-4 B^{2}\right) x^{3} e^{-B x^{2}}
\end{aligned}
$$

so

$$
-f^{\prime \prime}+x^{2} f=\left(6 B+\left(1-4 B^{2}\right) x^{2}\right) A x e^{-B x^{2}}
$$

and we get a solution to our equation only if $1-4 B^{2}=0$ that is if $B=\frac{1}{2}$ (and then $6 B=3$ as desired). Finally the solution has $f^{\prime}(1)=1$ if $A e^{-1 / 2}=1$ so $A=e^{1 / 2}$ and $f(x)=x e^{-\frac{1}{2}\left(x^{2}-1\right)}$.
(9) Consider the equation $\frac{d y}{d t}=a(y-b)$.
(a) Define a new function $u(t)=y(t)-b$. What is the differential equation satisfied by u ?

Solution: $\quad u^{\prime}=y^{\prime}=a(y-b)^{\prime}=a u$.
(b) What is the general solution for $u(t)$?

Solution: $u(t)=C e^{a t}$ where $C=u(0)$.
(c) What is the general solution for $y(t)$?

Solution: $y(t)=u(t)+b=C e^{a t}+b$.
(d) Suppose $a<0$. What is the asymptotic behaviour of the solution as $t \rightarrow \infty$?

Solution: $y(t) \xrightarrow[x \rightarrow \infty]{ } b$ and the convergence is exponential: $y(t)-b$ decays exponentially.
(e) Suppose we are given the initial value $y(0)$. What is C ? What is the formula for $y(t)$ using this?
Solution: We have $C e^{a \cdot 0}+b=y(0)$ so $C=y(0)-b$ and $y(t)=(y(0)-b) e^{a t}+b$.
(10) Example: Newton's law of cooling. Suppose we place an object of temperature $T(0)$ in an environment of temperature $T_{\text {env }}$. It turns out that a good model for the temperature $T(t)$ of the object at time t is

$$
\frac{d T}{d t}=-k\left(T-T_{\mathrm{env}}\right)
$$

where $k>0$ is a positive constant.
(a) Suppose $T(t)>T_{\text {env }}$. Is $T^{\prime}(t)$ positive or negative? What if $T(t)<T_{\text {env }}$? Explain this in words. Solution: If $T(t)>T_{\text {env }}$ and $T-T_{\text {env }}>0$ so $-k\left(T-T_{\text {env }}\right)<0$. In other words, the temperature will decrease. If $T<T_{\text {env }}$ we find $T^{\prime}>0$ and the temperature will increase. Either way the temperature tends towards $T_{\text {env }}$.
(b) A body is found at 1:30am and its temperature is measured to be $32.5^{\circ} \mathrm{C}$. At $2: 30 \mathrm{am}$ its temperature is found to be $30.3^{\circ} \mathrm{C}$. The temperature of the room in which the body was found is measured to be $20^{\circ} \mathrm{C}$ and we have no reason to believe the ambient temperature has changed. What was the time of death?
Solution: As we have seen above let $u(t)=T(t)-T_{\text {env }}$ and then the equation says the temperature difference decays exponentially: $u^{\prime}(t)=-k u(t)$ and hence $u(t)=u(0) e^{-k t}$. Measuring time in hours and letting $t=0$ at 1:30am we have $u(0)=32.5-20=12.5$ and $u(1)=30.3-20=10.3$. We thus have

$$
e^{-k}=\frac{u(1)}{u(0)}=\frac{10.3}{12.5}
$$

and hence

$$
k=\log \frac{12.5}{10.3}
$$

The question asks when $T(t)=37^{\circ} \mathrm{C}$, that is when $u(t)=17$. This reads

$$
u(0) e^{-k t}=17
$$

so

$$
\begin{aligned}
t & =\frac{1}{k} \log \frac{u(0)}{17} \approx-1.6 \mathrm{~h} \\
& =\frac{\log (12.5 / 17)}{\log (12.5 / 10.3)} \\
& =-\frac{\log (17 / 12.5)}{\log (12.5 / 10.3)} \\
& \approx-1.6 \mathrm{~h} \approx 95 \mathrm{~min}
\end{aligned}
$$

(11) A body falling through the air is at height $y(t)$ at time t where $y(t)$ satisfies the differential equation

$$
\frac{d^{2} y}{d t^{2}}=-g+\kappa\left(\frac{d y}{d t}\right)^{2}
$$

Here g is the acceleration due to gravity and κ is the drag coefficient.
(a) Write the differential equation satisfied by the velocity $v=\frac{d y}{d t}$.

Solution: We have

$$
\frac{d v}{d t}=-g+\kappa v^{2}
$$

(b) This differential equation has a fixed point (also known as a steady state): find the value u (called the "terminal velocity") such that the constant function $v(t) \equiv u$ is a solution.
Solution: If v is constant, $\frac{d v}{d t}=0$ so we need to solve $\kappa u^{2}-g=0$ that is

$$
u=\sqrt{\frac{g}{\kappa}}
$$

(c) Define the hyperbolic trigonometric functions $\cosh x=\frac{e^{x}+e^{-x}}{2}, \sinh x=\frac{e^{x}-e^{-x}}{2}$, and $\tanh x=$ $\frac{\sinh x}{\cosh x}$. Check that $(\cosh x)^{\prime}=\sinh x,(\sinh x)^{\prime}=\cosh x$ and that $(\tanh x)^{\prime}=1-\tanh ^{2} x$.
Solution: We have

$$
\begin{aligned}
\frac{d}{d x} \cosh x & =\frac{d}{d x}\left(\frac{e^{x}+e^{-x}}{2}\right)=\frac{1}{2}\left(e^{x}-e^{-x}\right)=\sinh x \\
\frac{d}{d x} \sinh x & =\frac{d}{d x}\left(\frac{e^{x}-e^{-x}}{2}\right)=\frac{1}{2}\left(e^{x}+e^{-x}\right)=\cosh x \\
\frac{d}{d x} \tanh x & =\frac{d}{d x}\left(\frac{\sinh x}{\cosh x}\right)=\frac{(\sinh x)^{\prime}}{\cosh x}-\frac{\sinh x \cdot(\cosh x)^{\prime}}{(\cosh x)^{2}} \\
& =\frac{\cosh x}{\cosh x}-\frac{\sinh x \cdot \sinh x}{(\cosh x)^{2}}=1-\tanh ^{2} x
\end{aligned}
$$

(d) Find the values of A, α for which

$$
v=-A \tanh \left(\alpha\left(t-t_{0}\right)\right)
$$

solves the differential equation.
Solution: We have

$$
\begin{aligned}
\frac{d v}{d t} & =-\alpha A\left(1-\tanh ^{2}\left(\alpha\left(t-t_{0}\right)\right)\right. \\
& =-\alpha A+\frac{\alpha}{A} v^{2}
\end{aligned}
$$

so we need $\alpha A=g$ and $\frac{\alpha}{A}=\kappa$. Multiplying the two we have $\alpha^{2}=g \kappa$ and dividing the two we get $A^{2}=\frac{g}{\kappa}$. We therefore have $A=u$ and that the solution is

$$
v(t)=-u \tanh \left(\sqrt{\kappa g}\left(t-t_{0}\right)\right)
$$

(e) Show that $\lim _{x \rightarrow \infty} \tanh x=1$ and conclude that $v(t)$ indeed converges to the terminal velocity as $t \rightarrow \infty$.

