Math 100A - WORKSHEET 9 OPTIMIZATION

1. Optimization of functions

(1) Let $f(x)=x^{4}-4 x^{2}+4$.
(a) Find the absolute minimum and maximum of f on the interval $[-5,5]$.
(b) Find the absolute minimum and maximum of f on the interval $[-1,1]$.
(c) Find the absolute minimum and maximum of f (if they exist) on the interval $(-1,1)$.
(d) Find the absolute minimum and maximum of f (if they exist) on the real line.
(2) Let $f(x)=|x|$. Find the absolute minimum and maximum of f on the interval $[-1,3]$.
(3) Find the global extrema (if any) of $f(x)=\frac{1}{x}$ on the intervals $(0,5)$ and $[1,4]$.

2. Optimization problems

Problem-solving steps: (0) read carefully, draw picture; (1) fix coordinate system, name variables; (2) enforce relations; (3) create objective function; (4) calculus; (5) endgame; (6) sanity checks.
(4) $\star \star$ A standard model for the interaction between two neutral molecules is the Lennard-Jones Potential $V(r)=\epsilon\left[\left(\frac{r}{R}\right)^{-12}-2\left(\frac{r}{R}\right)^{-6}\right]$. Here r is the distance between the molecules and $R, \epsilon>0$ are parameters.
(a) What ist he range of r values that makes sense?
(b) Physical systems tend to settle into a state of least energy. Find the minimum of this potential.
(c) Expand the potential to second order about the minimum.
(5) Suppose we have 100 m of fencing to enlose a rectangular area against a long, straight wall. What is the largest area we can enclose?
(6) ** (Final 2012) The right-angled triangle $\triangle A B P$ has the vertex $A=(-1,0)$, a vertex P on the semicircle $y=\sqrt{1-x^{2}}$, and another vertex B on the x-axis with the right angle at B. What is the largest possible area of such a triangle?
(7) A ferry operator is trying to optimize profits. Before each ferry trip workers spend some time loading cars after which the trip takes 1 hour. The ferry can carry up to 100 cars, each paying $\$ 50$ for the trip. Worker salaries total $\$ 500 /$ hour and the fuel for the trip costs $\$ 250$. The workers can load $N(t)=100 \frac{t}{t+1}$ cars in t hours.
(a) How much time should be devoted to loading to maximize profits per trip.
(b) The ferry runs continuously. How much time should be devoted to loading to maximize profits per hour?
(8) (Final 2010) A river running east-west is 6 km wide. City A is located on the shore of the river; city B is located 8 km to the east on the opposite bank. It costs $\$ 40 / \mathrm{km}$ to build a bridge across the river, $\$ 20 / \mathrm{km}$ to build a road along it. What is the cheapest way to construct a path between the cities?
(9) (Final 2019) Among all rectangles inscribed in a given circle, which one has the largest perimeter? Prove your answer.
(10) Owners of a car rental company have determined that if they charge customers d dollars per day to rent a car, the number of cars N they rent per day can be modelled by the function $N(d)=A-B d$ where $A, B>0$ are constants.
(a) What is the range of d for which this model makes sense?
(b) What price should they set to maximize their daily revenue?
(11) A car factory can produce up to 120 units per week. Find the (whole number) quantity q of units which maximizes profit if the total revenue in dollars is $R(q)=(750-3 q) q$, the total cost in dollars is $C(q)=10,000+148 q$ (observe the combination of fixed and variable costs).

