Math 100A – SOLUTIONS TO WORKSHEET 8 TAYLOR EXPANSION

1. TAYLOR EXPANSION

- (1) (Review) Use linear approximations to estimate:
 - (a) $\star \log \frac{4}{3}$ and $\log \frac{2}{3}$. Combine the two for an estimate of $\log 2$. **Solution:** Let $f(x) = \log x$ so that $f'(x) = \frac{1}{x}$. Then f(1) = 0 and f'(1) = 1 so $f(1 + \frac{1}{3}) \approx \frac{1}{3}$ and $f(1 - \frac{1}{3}) \approx -\frac{1}{3}$. Then $\log 2 = \log \frac{4}{3}/\frac{2}{3} = \log \frac{4}{3} - \log \frac{2}{3} \approx \frac{2}{3}$.
 - (b) $\star \sin 0.1$ and $\cos 0.1$. **Solution:** Let $f(x) = \sin x$ so that $g(x) = f'(x) = \cos x$ and $g'(x) = -\sin x$. Then f(1) = 0and $g(0) = f'(0) = \cos 0 = 1$ while $g'(0) = -\sin 0 = 0$. So $f(0.1) \approx 0 + 1 \cdot 0.1 \approx 0.1$ and $g(0.1) \approx 1 - 0 \cdot 0.01 = 1$.
- (2) Let $f(x) = e^x$
 - (a) Find $f(0), f'(0), f^{(2)}(0), \cdots$
 - (b) Find a polynomial $T_0(x)$ such that $T_0(0) = f(0)$.
 - (c) Find a polynomial $T_1(x)$ such that $T_1(0) = f(0)$ and $T'_1(0) = f'(0)$.
 - (d) Find a polynomial $T_2(x)$ such that $T_2(0) = f(0), T'_2(0) = f'(0)$ and $T_2^{(2)}(0) = f^{(2)}(0)$.
 - (d) Find a polynomial $T_2(x)$ such that $T_2(0) = f(0)$, $T_2(0) = f(0)$ and $T_2^{-1}(0) = f^{(k)}(0)$. (e) Find a polynomial $T_3(x)$ such that $T_3^{(k)}(0) = f^{(k)}(0)$ for $0 \le k \le 3$. **Solution:** $f(x) = f'(x) = f^{(2)}(x) = \cdots = e^x$ so $f(0) = f'(0) = f''(0) = \cdots = 1$. Now $T_0(x) = 1$ works, as does $T_1(x) = 1 + x$. If $T_2(x) = 1 + x + cx^2$ then $T_2''(x) = 2c = 1$ means $c = \frac{1}{2}$ and $T_2(x) = 1 + x + \frac{1}{2}x^2$. Finally, $T_3(x) = 1 + x + \frac{1}{2}x^2 + dx^3$ works if 6d = 1 so if $d = \frac{1}{6}$.
- (3) Do the same with $f(x) = \log x$ about x = 1. **Solution:** $f'(x) = \frac{1}{x}, f''(x) = -\frac{1}{x^2}, f'''(x) = \frac{2}{x^3}$ so f(1) = 0, f'(1) = 1, f''(1) = -1, f'''(1) = 2. Try $T_3(x) = a + bx + cx^2 + dx^3$ (can truncate later). Need a = 0 to make $T_3(x) = 0$. Diff we get $T'_3(x) = b + 2cx + 3dx^2$, setting x = 0 gives b = 1. Diff again gives $T''_3(x) = 2c + 6dx$ so 2c = -1and $c = -\frac{1}{2}$. Diff again give $T''_3(x) = 6d = 2$ so $d = \frac{1}{3}$ and $T_3(x) = (x - 1) - \frac{1}{2}(x - 1)^2 + \frac{1}{3}(x - 1)^3$.

Truncate this to get
$$T_0, T_1, T_2$$
.

Let
$$c_k = \frac{f^{(k)}(a)}{k!}$$
. The *n*th order Taylor expansion of $f(x)$ about $x = a$ is the polynomial
$$T_n(x) = c_0 + c_1(x-a) + \dots + c_n(x-a)^n$$

(4) \star Find the 4th order MacLaurin expansion of $\frac{1}{1-x}$ (=Taylor expansion about x = 0) **Solution:** $f'(x) = \frac{1}{(1-x)^2}, f''(x) = \frac{2}{(1-x)^3}, f^{(3)}(x) = \frac{6}{(1-x)^4}, f^{(4)}(x) = \frac{24}{(1-x)^5} f^{(k)}(0) = k!$ and the Taylor expansion is $1 + x + x^2 + x^3 + x^4$.

(5) ****** Find the *n*th order expansion of $\cos x$, and approximate $\cos 0.1$ using a 3rd order expansion

Solution: $(\cos x)' = -\sin x$, $(\cos x)^{(2)} = -\cos x$, $(\cos x)^{(3)} = \sin x$, $(\cos x)^{(4)}(x) = \cos x$ and the pattern repeats. Plugging in zero we see that the derivatives at 0 (starting with the zeroeth) are $1, 0, -1, 0, 1, 0, -1, 0, \ldots$ so the Taylor expansion is

$$\cos x = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \cdots$$

In particular, $\cos 0.1 \approx 1 - \frac{1}{2}(0.1)^2 = 0.995.$

(6) (Final, 2015) \star Let $T_3(x) = 24 + 6(x-3) + 12(x-3)^2 + 4(x-3)^3$ be the third-degree Taylor polynomial of some function f, expanded about a = 3. What is f''(3)? Solution: We have $c_2 = \frac{f^{(2)}}{2!} = 12$ so $f^{(2)} = 24$.

Date: 25/10/2023, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

(7) $\star\star$ In special relativity we have the formula $E = \frac{mc^2}{\sqrt{1-v^2/c^2}}$ for the kinetic energy of a moving particle. Here m is the "rest mass" of the particle and c is the speed of light. Examine the behaviour of this formula for small velocities by expanding it to second order in the small parameter $x = v^2/c^2$. What is the 4th order expansion of the energy? Do you recognize any of the terms?

Solution: We write the formula as $E = mc^2(1-x)^{-1/2}$. Letting $f(x) = (1-x)^{-1/2}$ we have $f'(x) = \frac{1}{2}(1-x)^{-3/2}$ and $f''(x) = \frac{3}{4}(1-x)^{-5/2}$ so f(0) = 1, $f'(0) = \frac{1}{2}$ and $f''(0) = \frac{3}{4}$ giving the expansion

$$E \approx mc^{2} \left(1 + \frac{1}{2}x + \frac{1}{2!} \cdot \frac{3}{4}x^{2} \right)$$
$$= mc^{2} \left(1 + \frac{1}{2}\frac{v^{2}}{c^{2}} + \frac{3}{8}\frac{v^{4}}{c^{4}} \right)$$
$$= mc^{2} + \frac{1}{2}mv^{2} + \frac{3}{8}\left(\frac{v^{2}}{c^{2}}\right)mv^{2}$$

correct to 4th order in v/c. In particular we the famous rest energy mc^2 and that for small velocities the main contribution is the Newtonian kinetic energy $\frac{1}{2}mv^2$. The first relativistic correction is negative, and indeed is fairly small until $\frac{v}{c}$ gets close to 1.

2. New expansions from old

Near
$$u = 0$$
: $\frac{1}{1-u} = 1 + u + u^2 + u^3 + u^4 \cdots$ $\exp u = 1 + \frac{1}{1!}u + \frac{1}{2!}u^2 + \frac{1}{3!}u^3 + \frac{1}{4!}u^4 + \cdots$

(8) \star (Final, 2016) Use a 3rd order Taylor approximation to estimate sin 0.01. Then find the 3rd order Taylor expansion of $(x+1)\sin x$ about x=0.

Let $f(x) = \sin x$. Then $f'(x) = \cos x$, $f^{(2)}(x) = -\sin x$ and $f^{(3)}(x) = -\cos x$. Solution: Thus f(0) = 0, f'(0) = 1, f''(0) = 0, $f^{(3)}(0) = -1$ and the third-order expansion of $\sin x$ is $0 + \frac{1}{1!}x + \frac{0}{2!}x^2 + \frac{(-1)}{3!}x^3 = x - \frac{1}{6}x^3$. In particular $\sin 0.1 \approx 0.1 - \frac{1}{6000}$. We then also have, correct to third order, that

$$(x+1)\sin x \approx (x+1)\left(x-\frac{1}{6}x^3\right) = x+x^2-\frac{1}{6}x^3-\frac{1}{6}x^4 \approx x+x^2-\frac{1}{6}x^3$$

(9) ****** Find the 3rd order Taylor expansion of $\sqrt{x} - \frac{1}{4}x$ about x = 4. **Solution:** Let $f(x) = \sqrt{x}$. Then $f'(x) = \frac{1}{2\sqrt{x}}$, $f^{(2)}(x) = -\frac{1}{4x^{3/2}}$ and $f^{(3)}(x) = \frac{3}{8}x^{-5/2}$. Thus $f(4) = 2, f'(4) = \frac{1}{4}, f^{(2)}(4) = -\frac{1}{32}, f^{(3)}(4) = \frac{3}{256}$ and the third-order expansions are

$$\sqrt{x} \approx 2 + \frac{1}{4}(x-4) - \frac{1}{32 \cdot 2!}(x-4)^3 + \frac{3}{256 \cdot 3!}(x-4)^3$$
$$\frac{1}{4}x \approx 1 + \frac{1}{4}(x-4)$$

so that

$$\sqrt{x} - \frac{1}{4}x \approx 1 - \frac{1}{64}(x-4)^2 + \frac{1}{512}(x-4)^3.$$

(10) ****** Find the 8th order expansion of $f(x) = e^{x^2} - \frac{1}{1+x^3}$. What is $f^{(6)}(0)$?

Solution: To fourth order we have $e^u \approx 1 + u + \frac{u^2}{2} + \frac{u^3}{6} + \frac{u^4}{24} + \frac{u^5}{120}$ so $e^{x^2} \approx 1 + x^2 + \frac{x^4}{2} + \frac{x^6}{6} + \frac{x^8}{24}$ to 8th order. We also know that $\frac{1}{1-u} \approx 1 + u + u^2 + u^3$ so $\frac{1}{1+x^3} \approx 1 - x^3 + x^6$ correct to 8th order. We conclude that

$$e^{x^2} - \frac{1}{1+x^3} \approx \left(1+x^2 + \frac{x^4}{2} + \frac{x^6}{6} + \frac{x^8}{24}\right) - \left(1-x^3 + x^6\right)$$
$$\approx x^2 - x^3 + \frac{1}{2}x^4 - \frac{5}{6}x^6 + \frac{1}{24}x^8.$$

In particular, $\frac{f^{(6)}(0)}{6!} = -\frac{5}{6}$ so $f^{(6)}(0) = -720 \cdot \frac{5}{6} = -600$.

(11) Find the quartic expansion of $\frac{1}{\cos 3x}$ about x = 0. **Solution:** To 4th order we have $\cos 3x \approx 1 - \frac{9}{2}x^2 + \frac{27}{8}x^4 = 1 - u$ where $u = \frac{9}{2}x^2 - \frac{27}{8}x^4$. Since u^3 is already a 6th order term we can truncate at the quadratic term of the geometric series:

$$\frac{1}{\cos 3x} \approx \frac{1}{1-u}$$

$$\approx 1+u+u^{2}$$

$$\approx 1+\left(\frac{9}{2}x^{2}-\frac{27}{8}x^{4}\right)+\left(\frac{9}{2}x^{2}-\frac{27}{8}x^{4}\right)^{2}$$

$$\approx 1+\frac{9}{2}x^{2}-\frac{27}{8}x^{4}+\frac{81}{4}x^{4}$$

$$= 1+\frac{9}{2}x^{2}+\frac{135}{8}x^{4}.$$

correct to 4th order.

- (12) (Change of variable/rebasing polynomials)
 - (a) Find the Taylor expansion of the polynomial $x^3 x$ about a = 1 using the identity x = 1 + (x-1). Solution: We have

$$\begin{aligned} x^3 - x &= (1 + (x - 1))^3 - (1 + (x - 1)) \\ &= 1 + 3(x - 1) + 3(x - 1)^2 + (x - 1)^3 - 1 - (x - 1) \\ &= 2(x - 1) + 3(x - 1)^2 + (x - 1)^3 \,. \end{aligned}$$

(b) Expand e^{x^3-x} to third order about a = 1.

Solution: By the previous problem we have

$$\exp(x^3 - x) = \exp\left(2(x - 1) + 3(x - 1)^2 + (x - 1)^3\right)$$

$$\approx 1 + \left(2(x - 1) + 3(x - 1)^2 + (x - 1)^3\right)$$

$$+ \frac{1}{2}\left(2(x - 1) + 3(x - 1)^2 + (x - 1)^3\right)^2$$

$$+ \frac{1}{6}\left(2(x - 1) + 3(x - 1)^2 + (x - 1)^3\right)^3$$

(no need to consider higher order terms because $u = 2(x-1) + 3(x-1)^2 + (x-1)^3$ is a multiple of (x-1) so any part of the kth power of u has at least kth order in (x-1). Expanding the powers and retaining only terms up to third order we get

$$\exp(x^3 - x) \approx 1 + (2(x - 1) + 3(x - 1)^2 + (x - 1)^3) + \frac{1}{2} (4(x - 1)^2 + 12(x - 1)^3) + \frac{1}{6} (8(x - 1)^3) = 1 + 2(x - 1) + 5(x - 1)^2 + 8\frac{1}{3}(x - 1)^3$$

correct to third order.

(13) Expand $\exp(\cos 2x)$ to sixth order about x = 0.

Solution: We already know that $\cos \theta \approx 1 - \frac{\theta^2}{2} + \frac{\theta^4}{24} - \frac{\theta^6}{720}$ correct to sixth order. Setting $\theta = 2x$ we get

$$\begin{split} \exp(\cos 2x) &\approx \exp\left(1 - 2\theta^2 + \frac{2}{3}\theta^4 - \frac{4}{45}\theta^6\right) \\ &= e \cdot \exp\left(-2\theta^2 + \frac{2}{3}\theta^4 - \frac{4}{45}\theta^6\right) \\ &\approx e\left[1 + \left(-2\theta^2 + \frac{2}{3}\theta^4 - \frac{4}{45}\theta^6\right) + \frac{1}{2}\left(-2\theta^2 + \frac{2}{3}\theta^4 - \frac{4}{45}\theta^6\right)^2 + \frac{1}{6}\left(-2\theta^2 + \frac{2}{3}\theta^4 - \frac{4}{45}\theta^6\right)^3\right] \\ &= e\left[1 - 2\theta^2 + \frac{2}{3}\theta^4 - \frac{4}{45}\theta^6 + \frac{1}{2}\left(4\theta^4 - \frac{8}{3}\theta^6\right) - \frac{8}{6}\theta^6\right] \\ &= e\left[1 - 2\theta^2 + 2\frac{2}{3}\theta^4 - \frac{124}{45}\theta^6\right] \\ &= e - 2e \cdot \theta^2 + \frac{8e}{3}\theta^4 - \frac{124e}{45}\theta^6\,, \end{split}$$

(14) $\star \star \star$ Show that $\log \frac{1+x}{1-x} \approx 2(x + \frac{x^3}{3} + \frac{x^5}{5} + \cdots)$. Use this to get a good approximation to $\log 3$ via a careful choice of x.

careful choice of x. Solution: Let $f(x) = \log(1+x)$. Then $f'(x) = \frac{1}{1+x}$, $f^{(2)}(x) = -\frac{1}{(1+x)^2}$, $f^{(3)}(x) = \frac{1\cdot 2}{(1+x)^3}$, $f^{(4)}(x) = -\frac{1\cdot 2\cdot 3}{(1+x)^4}$ and so on, so $f^{(k)}(x) = (-1)^{k-1} \cdot \frac{(k-1)!}{(1+x)^k}$. We thus have that f(0) = 0 and for $k \ge 1$ that $f^{(k)}(0) = (-1)^{k-1}(k-1)!$ and $\frac{f^{(k)}(0)}{k!} = \frac{(-1)^{k-1}}{k}$. We conclude that

$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$

Plugging -x we get:

$$\log(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} \cdots$$

 \mathbf{SO}

$$\log \frac{1+x}{1-x} = \log(1+x) - \log(1-x) = 2x + 2\frac{x^3}{3} + 2\frac{x^5}{5} + \cdots$$

In particular

$$\log 3 = \log \frac{1 + \frac{1}{2}}{1 - \frac{1}{2}} = 2\left(\frac{1}{2} + \frac{1}{24} + \frac{1}{160} + \cdots\right) = 1 + \frac{1}{12} + \frac{1}{80} + \cdots \approx 1.096$$

(15) (2023 Piazza @389) Find the asymptotics as $x \to \infty$

(a) $\star \star \sqrt{x^4 + 3x^3} - x^2$

Solution: Clearly as $x \to \infty \sqrt{x^4 + 3x^3} \sim \sqrt{x^4} \sim x^2$ so this is about the cancellation and we need a more precise answer. Extracting the factor of x^2 from the square root we see

$$\sqrt{x^4 + 3x^3} - x^2 = x^2 \sqrt{1 + \frac{3}{x}} - x^2 = x^2 \left(\sqrt{1 + \frac{3}{x}} - 1\right)$$
.

To understand the behaviour of $\sqrt{1+\frac{3}{x}}-1$ we notice that $\frac{3}{x}$ is a *small parameter*, and that $\sqrt{1+u} \approx 1 + \frac{1}{2}u - \frac{1}{8}u^2$ correct to second order. We thus have

$$\sqrt{x^4 + 3x^3} - x^2 \approx x^2 \left(1 + \frac{1}{2} \frac{3}{x} - \frac{1}{8} \frac{9}{x^2} - 1 \right)$$
$$\approx \frac{3}{2}x - \frac{9}{8}$$

with further corrections being lower order. We conclude that this linear approximation would have been sufficient and that

$$\sqrt{x^4 + 3x^3} - x^2 \sim \frac{3}{2}x$$

as $x \to \infty$. (b) $\star \star \star \sqrt[3]{x^6 - x^4} - \sqrt{x^4 - \frac{2}{3}x^2}$

Solution: Both roots are asymptotically x^2 . Using the linear approximation we find

$$\sqrt[3]{x^6 - x^4} = x^2 \sqrt[3]{1 - \frac{1}{x^2}} \approx x^2 \left(1 - \frac{1}{3}\frac{1}{x^2}\right)$$

and

$$\sqrt{x^4 - \frac{2}{3}x^2} \approx x^2 \left(1 - \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{1}{x^2}\right)$$

which cancel exactly, so we need to go one order further. Since $(1+u)^{\alpha} \approx 1 + \alpha u + \frac{\alpha(\alpha-1)}{2}u^2 + \cdots$ as we can check by differentiation we see that as $x \to \infty$

$$\sqrt{1+u} \approx 1 + \frac{1}{2}u - \frac{1}{8}u^2$$

 $\sqrt[3]{1+u} \approx 1 + \frac{1}{3}u - \frac{1}{9}u^2$

to second order, so

$$\sqrt[3]{x^6 - x^4} - \sqrt{x^4 - \frac{2}{3}x^2} \approx x^2 \left[\left(1 - \frac{1}{3x^2} - \frac{1}{9x^4} \right) - \left(1 - \frac{1}{2}\frac{2}{3x^2} - \frac{4}{8 \cdot 9x^4} \right) \right]$$
$$\approx -\frac{1}{18x^2}$$

with further lower-order terms, so

$$\sqrt[3]{x^6 - x^4} - \sqrt{x^4 - \frac{2}{3}x^2} \sim -\frac{1}{18x^2}$$

as $x \to \infty$ and in particular there is decay.

(16) Evaluate $\lim_{x\to 0} \frac{e^{-x^2/2} - \cos x}{x^4}$.

Solution: We know that $\cos x = 1 - \frac{x^2}{2} + \cdots$. Using the linear expansion $e^u \approx 1 + u$ we'd get $e^{-x^2/2} \approx 1 - x^2/2$ which means the difference cancels to third order, so let's expand to fourth order. We get

$$e^{-x^2/2} \approx 1 - \frac{x^2}{2} + \frac{1}{2} \left(\frac{x^2}{2}\right)^2 = 1 - \frac{x^2}{2} + \frac{x^4}{8}$$

 $\cos x \approx 1 - \frac{x^2}{2} + \frac{x^4}{24}.$

Subtracting and dividing by x^4 we get

$$\frac{e^{-x^2/2} - \cos x}{x^4} = \frac{1}{12}$$

correct to 0th order, so this is the limit (expanding both functions to the next order would give the next correction).