Math 100A - SOLUTIONS TO WORKSHEET 7 CURVE SKETCHING

1. Convexity and Concavity

(1) Consider the curve $y=x^{3}-x$.
(a) \star Find the line tangent to the curve at $x=1$.

Solution: $\frac{d y}{d x}=3 x^{2}-1$ so the derivative at $x=1$ is 2 . Since $y(1)=0$ the line is $Y=2(X-1)$.
(b) $\star \star$ Near $x=1$, is the line above or below the curve? Hint: how does the slope of the curve behave to the right and left of the point?
Solution: Since $x>0$ the slope is increasing near $x=1$, so to the right the function grows faster than the line, to the right is decreases slower than the line, and the line is below.
Solution: We have $x^{3}-x-2(x-1)=(x-1)\left(x^{2}+x-2\right)=(x-1)^{2}(x+2)=3(x-1)^{2}+(x-1)^{3}$ which is positive for x close enough to 1 . In next week's lecture we'll talk more about the representation $x^{3}-x=2(x-1)+3(x-1)^{2}+(x-1)^{3}$.
(2) For each curve find its domain; where is it concave up or down? Where are the inflection points.
(a) $\star y=x \log x-\frac{1}{2} x^{2}$.

Solution: This is defined on $(0, \infty)$. We have $y^{\prime}=\log x-1-x$ so $y^{\prime \prime}=\frac{1}{x}-1$. Thus $y^{\prime \prime}>0$ if $x<1, y^{\prime \prime}<0$ if $x>1$, and the function is concave up on $(0,1)$, concave down on $(1, \infty)$ and has an inflection point at $x=1$.
(b) $\star y=\sqrt[3]{x}$.

Solution: This is an odd root, which is defined (and continuous) on the entire line. We have $y^{\prime}=\frac{1}{3} x^{-2 / 3}$ which is defined for $x \neq 0$ (the tangent line at $x=0$ is vertical, as we can see by switching to the representation $\left.x=y^{3}\right)$. We then have $y^{\prime \prime}=-\frac{2}{9} x^{-5 / 3}$ which is positive when $x<0$ and positive when $x>0$, so the function changes convacity at $x=0$ and that is an inflection point.

2. Curve sketching

(3) $\star \star$ Let $f(x)=\frac{x^{2}}{x^{2}+1}$ for which $f^{\prime}(x)=\frac{2 x}{\left(x^{2}+1\right)^{2}}$ and $f^{\prime \prime}(x)=\frac{2\left(1-3 x^{2}\right)}{\left(x^{2}+1\right)^{3}}$.
(a) What are the domain and intercepts of f ? What are the asymptotics at $\pm \infty$? Are there any vertical asymptotes? What are the asymptotices there?
Solution: The function is defined for all x (always have $x^{2}+1>0$). We have $f(0)=0$ and conversely if $f(x)=0$ then $x^{2}=0$ so $x=0$. As $x \rightarrow \pm \infty$ we have

$$
\frac{x^{2}}{x^{2}+1} \sim \frac{x^{2}}{x^{2}}=1
$$

so we have the horizontal asymptote $y=1$ in both ends.
(b) What are the intervals of increase/decrease? The local and global extrema?

Solution: Since $\frac{2}{\left(x^{2}+1\right)^{2}}$ is always positive, $f^{\prime}(x)>0$ when $x>0$ and $f^{\prime}(x)<0$ when $x<0$. Thus f is decreasing on $(-\infty, 0)$, increasing on $(0, \infty)$ and has a local (and global) minimum at $x=0$.
(c) What are the intervals of concavity? Any inflection points?

Solution: Since $\frac{2}{\left(x^{2}+1\right)^{3}}$ is always positive, the sign of $f^{\prime \prime}(x)$ is the same as that of $1-3 x^{2}$. In particular $f^{\prime \prime}(x)>0$ when $1-3 x^{2}>0$, that is when $3 x^{2}<1$ so when $|x|<\frac{1}{\sqrt{3}}$. Conversely $f^{\prime \prime}(x)<0$ when $1-3 x^{2}<0$ that is when $|x|>\frac{1}{\sqrt{3}}$ or when $x \in\left(-\infty,-\frac{1}{\sqrt{3}}\right) \cup\left(\frac{1}{\sqrt{3}}, \infty\right)$. We thus have inflection points at $\pm \frac{1}{\sqrt{3}}$.
(d) Sketch a graph of $f(x)$.

(4) $\star \star$ Let $f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$ for which $f^{\prime}(x)=-\frac{1}{\sqrt{2 \pi \sigma^{6}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}(x-\mu)$ and $f^{\prime \prime}(x)=\frac{1}{\sqrt{2 \pi \sigma^{6}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}\left(\frac{(x-\mu)^{2}}{\sigma^{2}}-1\right)$.
(a) What are the domain and intercepts of f ? What are the asymptotics at $\pm \infty$? Are there any vertical asymptotes? What are the asymptotices there?
Solution: The function is defined for all x and is always positive. We have $f(0)=\frac{1}{\sqrt{2 \pi \sigma^{2}}}$. For large x the function will decay rapidly (morally like $e^{-x^{2} / 2 \sigma^{2}}$ even if that's not the correct asymptotics), so we have the horizontal asymptote $y=0$ on both sides.
(b) What are the intervals of increase/decrease? The local and global extrema?

Solution: Since $\frac{1}{\sqrt{2 \pi \sigma^{6}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$ is always positive, $f^{\prime}(x)>0$ when $x<\mu$ and $f^{\prime}(x)<0$ when $x>\mu$. Thus f is increasing on $(-\infty, \mu)$, decreasing on (μ, ∞) and has a local (and global) maximum at $x=\mu$.
(c) What are the intervals of concavity? Any inflection points?

Solution: Since $\frac{1}{\sqrt{2 \pi \sigma^{10}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$ is always positive, the sign of $f^{\prime \prime}(x)$ is the same as that of $\left((x-\mu)^{2}-\sigma^{2}\right)$. In particular $f^{\prime \prime}(x)>0$ when $|x-\mu|>\sigma$, that is on on $(-\infty, \mu-\sigma) \cup$ $(\mu+\sigma, \infty)$. Conversely $f^{\prime \prime}(x)<0$ when $|x-\mu|<\sigma$, that is on $(\mu-\sigma, \mu+\sigma)$. Finally we see there are inflection points at $\mu \pm \sigma$.
(d) Sketch a graph of $f(x)$.
(5) (Final, December 2007) $\star \star$ Let $f(x)=x \sqrt{3-x}$.
(a) Find its domain, intercepts, and asymptotics at the endpoints.

Solution: The function is defined for if $3-x \geq 0$ that is for $x \leq 3$. It is positive if $x>0$, so if $0<x<3$ and negative if $x<0$, and thus crosses the axis at $x=0$. As $x \rightarrow-\infty$ we have $x \sqrt{3-x} \sim x \sqrt{-x} \sim-|x|^{3 / 2}$. As $x \rightarrow 3$ we have $x \sim 3(3-x)^{1 / 2}$.
(b) What are the intervals of increase/decrease? The local and global extrema?

Solution: We have $f^{\prime}(x)=\sqrt{3-x}-\frac{x}{2 \sqrt{3-x}}=\frac{2(3-x)-x}{2 \sqrt{3-x}}=\frac{6-3 x}{2 \sqrt{3-x}}=\frac{3}{2} \cdot \frac{2-x}{\sqrt{3-x}}$. Since $\frac{3}{2 \sqrt{3-x}}$ is always positive, the sign of $f^{\prime}(x)$ is determined by $2-x$. Thus f^{\prime} is increasing on $x<2$, decreasing for $2<x<3$ and has its unique local maximum at $x=2$.
(c) Given $f^{\prime \prime}(x)=\frac{3 x-12}{4}(3-x)^{-3 / 2}$, what are the intervals of concavity? Any inflection points?

Solution: We have $f^{\prime \prime}(x)=\frac{3(x-4)}{4(3-x)^{-3 / 2}}$ is always positive. Now the domain of the function is $x<3$ so $x-4<-1<0$ on the entire domain and $f^{\prime \prime}(x)<0$ for all x - so the function is concave down and has no inflection points.
(d) Sketch a graph of $f(x)$.

