Math 100A – WORKSHEET 6 APPLICATIONS OF THE CHAIN RULE

1. Review

(1) Differentiate (a) $\star e^{\sqrt{\cos x}}$

(2) (Final, 2014) * Let $y = x^{\log x}$. Find $\frac{dy}{dx}$ in terms of x only.

2. Implicit Differentiation

(3) Find the line tangent to the curve $y^2 = 4x^3 + 2x$ at the point (2,6).

(4) (Final, 2015) Let $xy^2 + x^2y = 2$. Find $\frac{dy}{dx}$ at the point (1,1).

(5) (Final 2012) Find the slope of the line tangent to the curve $y + x \cos y = \cos x$ at the point (0, 1).

(6) Find y'' (in terms of x, y) along the curve $x^5 + y^5 = 10$ (ignore points where y = 0).

Date: 11/10/2023, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

3. Inverse trig functions

(7) Draw on the following axes graphs of $\sin \theta$ on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, $\cos \theta$ on $[0, \pi]$ and $\tan \theta$ on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, then of their inverse functions

(8) Evaluation

- (a) (Final 2014) Evaluate $\arcsin\left(-\frac{1}{2}\right)$ and $\arcsin\left(\sin\left(\frac{31\pi}{11}\right)\right)$.
- (b) (Final 2015) Simplify sin(arctan 4)
- (c) Find $\tan(\arccos(0.4))$
- (9) Differentiation (a) Find $\frac{d}{dx}(\arctan x)$

(b) Find $\frac{\mathrm{d}}{\mathrm{d}x} \left(\arcsin\left(2x\right) \right)$

(c) Find the line tangent to $y = \sqrt{1 + (\arctan(x))^2}$ at the point where x = 1.

(d) Find y' if $y = \arcsin(e^{5x})$. What is the domain of the functions y, y'?

4. Related Rates

(10) A particle is moving along the curve $y^2 = x^3 + 2x$. When it passes the point $(1, \sqrt{3})$ we have $\frac{dy}{dt} = 1$. Find $\frac{dx}{dt}$.

- (11) (Final, 2015, variant) A conical tank of water is 6m tall and has radius 1m at the top.
 - (a) The drain is clogged, and is filling up with rainwater at the rate of $5m^3/min$. How fast is the water rising when its height is 5m?

(b) The drain is unclogged and water begins to drain at the rate of $(5 + \frac{\pi}{4})m^3/min$ (but rain is still falling). At what height is the water falling at the rate of 1m/min?