Math 100A - WORKSHEET 6 APPLICATIONS OF THE CHAIN RULE

\author{

1. Review
}
(1) Differentiate
(a) $\star e^{\sqrt{\cos x}}$
(2) (Final, 2014) \star Let $y=x^{\log x}$. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x only.

2. Implicit Differentiation

(3) Find the line tangent to the curve $y^{2}=4 x^{3}+2 x$ at the point $(2,6)$.
(4) (Final, 2015) Let $x y^{2}+x^{2} y=2$. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at the point $(1,1)$.
(5) (Final 2012) Find the slope of the line tangent to the curve $y+x \cos y=\cos x$ at the point $(0,1)$.
(6) Find $y^{\prime \prime}$ (in terms of x, y) along the curve $x^{5}+y^{5}=10$ (ignore points where $y=0$).

3. Inverse trig functions

(7) Draw on the following axes graphs of $\sin \theta$ on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \cos \theta$ on $[0, \pi]$ and $\tan \theta$ on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, then of their inverse functions

(8) Evaluation
(a) (Final 2014) Evaluate $\arcsin \left(-\frac{1}{2}\right)$ and $\arcsin \left(\sin \left(\frac{31 \pi}{11}\right)\right)$.
(b) (Final 2015) Simplify $\sin (\arctan 4)$
(c) Find $\tan (\arccos (0.4))$
(9) Differentiation
(a) Find $\frac{\mathrm{d}}{\mathrm{d} x}(\arctan x)$
(b) Find $\frac{\mathrm{d}}{\mathrm{d} x}(\arcsin (2 x))$
(c) Find the line tangent to $y=\sqrt{1+(\arctan (x))^{2}}$ at the point where $x=1$.
(d) Find y^{\prime} if $y=\arcsin \left(e^{5 x}\right)$. What is the domain of the functions y, y^{\prime} ?

4. Related Rates

(10) A particle is moving along the curve $y^{2}=x^{3}+2 x$. When it passes the point $(1, \sqrt{3})$ we have $\frac{\mathrm{d} y}{\mathrm{~d} t}=1$. Find $\frac{\mathrm{d} x}{\mathrm{~d} t}$.
(11) (Final, 2015, variant) A conical tank of water is 6 m tall and has radius 1 m at the top.
(a) The drain is clogged, and is filling up with rainwater at the rate of $5 \mathrm{~m}^{3} / \mathrm{min}$. How fast is the water rising when its height is 5 m ?
(b) The drain is unclogged and water begins to drain at the rate of $\left(5+\frac{\pi}{4}\right) \mathrm{m}^{3} / \mathrm{min}$ (but rain is still falling). At what height is the water falling at the rate of $1 \mathrm{~m} / \mathrm{min}$?

