Math 100A – SOLUTIONS TO WORKSHEET 6 APPLICATIONS OF THE CHAIN RULE

1. Review

(1) Differentiate

(a) $\star e^{\sqrt{\cos x}}$

Solution: We repeatedly apply the chain rule:

$$\frac{\mathrm{d}}{\mathrm{d}x}e^{\sqrt{\cos x}} = e^{\sqrt{\cos x}}\frac{\mathrm{d}}{\mathrm{d}x}\sqrt{\cos x}$$
$$= e^{\sqrt{\cos x}}\frac{1}{2\sqrt{\cos x}}\frac{\mathrm{d}}{\mathrm{d}x}\cos x$$
$$= -e^{\sqrt{\cos x}}\frac{\sin x}{2\sqrt{\cos x}}.$$

(2) (Final, 2014) \star Let $y = x^{\log x}$. Find $\frac{dy}{dx}$ in terms of x only. Solution: By the logarithmic differentiation rule we have

$$\frac{\mathrm{d}y}{\mathrm{d}x} = y \frac{\mathrm{d}\log y}{\mathrm{d}x} = x^{\log x} \frac{\mathrm{d}}{\mathrm{d}x} \left(\log x \cdot \log x\right)$$
$$= x^{\log x} \left(2\log x \cdot \frac{1}{x}\right) = 2\log x \cdot x^{\log x - 1}$$

2. Implicit Differentiation

(3) Find the line tangent to the curve $y^2 = 4x^3 + 2x$ at the point (2, 6). **Solution:** Differentiating with respect to x we find $2y\frac{dy}{dx} = 12x^2 + 2$, so that $\frac{dy}{dx} = \frac{6x^2+1}{y}$. In particular at the point (2, 6) the slope is $\frac{25}{6}$ and the line is

$$y = \frac{25}{6}(x-2) + 6.$$

(4) (Final, 2015) Let $xy^2 + x^2y = 2$. Find $\frac{dy}{dx}$ at the point (1,1).

Solution: Differentiating with respect to x we find $y^2 + 2xy\frac{dy}{dx} + 2xy + x^2\frac{dy}{dx} = 0$ along the curve. Setting x = y = 1 we find that, at the indicated point,

$$3 + 3\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{(1,1)} = 0$$

 $\left.\frac{\mathrm{d}y}{\mathrm{d}x}\right|_{(1,1)} = -1\,.$

 \mathbf{SO}

- (5) (Final 2012) Find the slope of the line tangent to the curve y + x cos y = cos x at the point (0, 1). Solution: Differentiating with respect to x we find y' + cos y − x sin y ⋅ y' = − sin x, so that y' = − sin x + cos y / x sin y − 1. Setting x = 0, y = 1 we get that at that point y' = cos 1 / −1 = − cos 1.
 (6) Find y'' (in terms of x, y) along the curve x⁵ + y⁵ = 10 (ignore points where y = 0).
- (b) Find y' (in terms of x, y) along the curve $x^2 + y^2 = 10$ (ignore points where y = 0). **Solution:** Differentiating with respect to x we find $5x^4 + 5y^4y' = 0$, so that $y' = -\frac{x^4}{y^4}$. Differentiating again we find

$$y'' = -\frac{4x^3}{y^4} + \frac{4x^4y'}{y^5} = -\frac{4x^3}{y^4} - \frac{4x^8}{y^9}.$$

Date: 11/10/2023, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

3. Inverse trig functions

(7) Draw on the following axes graphs of $\sin\theta$ on $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$, $\cos\theta$ on $[0,\pi]$ and $\tan\theta$ on $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$, then of their inverse functions

		-				
	1		I			
		-				
Evaluation						

(8) Evaluation

(a) (Final 2014) Evaluate $\arcsin\left(-\frac{1}{2}\right)$ and $\arcsin\left(\sin\left(\frac{31\pi}{11}\right)\right)$. **Solution:** $\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$ so $\arcsin\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$. Also $\sin\left(\frac{31\pi}{11}\right) = \sin\left(\frac{31\pi}{11} - 2\pi\right) = \sin\left(\frac{9\pi}{11}\right) = \sin\left(\frac{-\pi}{11}\right) = \sin\left(\frac{2\pi}{11}\right)$ and $\frac{2\pi}{11} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ so $\arcsin\left(\sin\left(\frac{31\pi}{11}\right)\right) = \frac{2\pi}{11}$. (b) (Final 2015) Simplify $\sin(\arctan 4)$

Solution: Consider the right-angled triangle with sides 4, 1 and hypotenuse $\sqrt{1+4^2} = \sqrt{17}$. Let θ be the angle opposite the side of length 4. Then $\tan \theta = 4$ and $\sin \theta = \frac{4}{\sqrt{17}}$ so $\sin\left(\arctan 4\right) = \sin \theta = \frac{4}{\sqrt{17}}.$

(c) Find $\tan(\arccos(0.4))$

Solution: Consider the right-angled triangle with sides 0.4, $\sqrt{1-0.4^2}$ and hypotenuse 1. Let θ be the angle between the side of length 0.4 and the hypotenuse. Then $\cos \theta = \frac{0.4}{1} = 0.4$ and $\tan \theta = \frac{\sqrt{1-0.4^2}}{0.4} = \frac{\sqrt{0.84}}{0.4} = \sqrt{\frac{0.84}{0.16}} = \sqrt{5.25}.$

- (9) Differentiation

(a) Find $\frac{d}{dx}(\arctan x)$ **Solution:** Let $\theta = \arctan x$. Then $x = \tan \theta$ so by the chain rule $1 = \frac{dx}{dx} = \frac{d\tan \theta}{dx} = \frac{d}{dx} = \frac{d}{dx$

$$\frac{d(\arctan x)}{dx} = \frac{d\theta}{dx} = \frac{1}{1 + \tan^2 \theta} = \frac{1}{1 + x^2}$$

(b) Find $\frac{d}{dx} (\arcsin(2x))$ Solution: Since $\frac{d}{dx} \arcsin(x) = \frac{1}{\sqrt{1-x^2}}$, the chain rule gives

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\arcsin\left(2x\right)\right) = \frac{2}{\sqrt{1-4x^2}}.$$

Alternatively, let $\theta = \arcsin 2x$, so that $\sin \theta = 2x$. Differentiating both sides we get

$$\cos\theta \cdot \frac{\mathrm{d}\theta}{\frac{\mathrm{d}x}{2}} = 2$$

so that

$$\frac{\mathrm{d}\theta}{\mathrm{d}x} = \frac{2}{\cos\theta} = \frac{2}{\sqrt{1-\sin^2\theta}} = \frac{2}{\sqrt{1-4x^2}}$$

(c) Find the line tangent to $y = \sqrt{1 + (\arctan(x))^2}$ at the point where x = 1. Solution: Since $\frac{d}{dx} \arctan(x) = \frac{1}{1+x^2}$, the chain rule gives

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}x}\sqrt{1 + \left(\arctan(x)\right)^2} &= \frac{1}{2\sqrt{1 + \left(\arctan(x)\right)^2}} \cdot 2\arctan(x) \cdot \frac{1}{1 + x^2} \\ &= \frac{\arctan x}{(1 + x^2)\sqrt{1 + \left(\arctan(x)\right)^2}} \,. \end{split}$$

Now $\arctan 1 = \frac{\pi}{4}$ so the line is

$$y = \frac{\pi}{8\sqrt{1 + \frac{\pi^2}{16}}} \left(x - 1\right) + \sqrt{1 + \frac{\pi^2}{16}}.$$

(d) Find y' if $y = \arcsin(e^{5x})$. What is the domain of the functions y, y'? Solution: From the chain rule we get

$$\frac{\mathrm{d}}{\mathrm{d}x}\arcsin\left(e^{5x}\right) = \frac{1}{\sqrt{1 - e^{10x}}}5e^{5x} = \frac{5e^{5x}}{\sqrt{1 - e^{10x}}}$$

The function y itself is defined when $-1 \le e^{5x} \le 1$, that is when $5x \le 0$, that is when $x \le 0$. The derivative is defined when $-1 < e^{10x} < 1$, that is when x < 0. The point is that since $\sin \theta$ has horizontal tangents at $\pm \frac{\pi}{2}$, $\arcsin x$ has vertical tangents at ± 1 .

Solution: We can write the identity as $\sin y = e^{5x}$ and differentiate both sides to get $y' \cos y = 5e^{5x}$ so that

$$y' = \frac{5e^{5x}}{\cos y} = \frac{5e^{5x}}{\sqrt{1 - \sin^2 y}} = \frac{5e^{5x}}{\sqrt{1 - e^{10x}}}.$$

4. Related Rates

(10) A particle is moving along the curve $y^2 = x^3 + 2x$. When it passes the point $(1, \sqrt{3})$ we have $\frac{dy}{dt} = 1$. Find $\frac{dx}{dt}$.

Solution: We differentiate along the curve with respect to time, finding

$$2y\frac{\mathrm{d}y}{\mathrm{d}t} = 3x^2\frac{\mathrm{d}x}{\mathrm{d}t} + 2\frac{\mathrm{d}x}{\mathrm{d}t}$$

Plugging in $\frac{dy}{dt} = 1$, x = 1, $y = \sqrt{3}$ we find: $2\sqrt{3} = 5\frac{dx}{dt}$ so at that time we have

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{2\sqrt{3}}{5} \,.$$

- (11) (Final, 2015, variant) A conical tank of water is 6m tall and has radius 1m at the top.
 - (a) The drain is clogged, and is filling up with rainwater at the rate of 5m³/min. How fast is the water rising when its height is 5m?

Solution: The water fills a conical volume inside the drain. Suppose that at time t the height of the water is h(t) and the radius at the surface of the water is r(t). Then by similar triangles

$$\frac{r(t)}{h(t)} = \frac{1}{6} \,.$$

We therefore have $r(t) = \frac{h(t)}{6}$. The volume of the water is therefore

$$V(t) = \frac{1}{3}\pi r^2 h = \frac{\pi}{108}h^3(t) \,.$$

Differentiating we find

$$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\pi}{36}h^2(t)\frac{\mathrm{d}h}{\mathrm{d}t}$$

In particular, if $\frac{dV}{dt} = 5m^3/\text{min}$ and h = 5m then

$$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{36\cdot 5}{\pi\cdot 5^2} = \frac{36}{5\pi} \frac{\mathrm{m}}{\mathrm{min}}$$

(b) The drain is unclogged and water begins to drain at the rate of $(5 + \frac{\pi}{4})m^3/min$ (but rain is still falling). At what height is the water falling at the rate of 1m/min? **Solution:** We are now given $\frac{dV}{dt} = -\frac{\pi}{4} \frac{m^3}{min}$ and $\frac{dh}{dt} = -1 \frac{m}{min}$. Thus at the given time

$$h(t) = \sqrt{\frac{36\frac{dV}{dt}}{\pi \frac{dh}{dt}}} = \sqrt{\frac{-36\pi}{4\pi(-1)}} = \sqrt{9} = 3m.$$