Math 100A - SOLUTIONS TO WORKSHEET 6 APPLICATIONS OF THE CHAIN RULE

1. Review

(1) Differentiate
(a) $\star e^{\sqrt{\cos x}}$

Solution: We repeatedly apply the chain rule:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} e^{\sqrt{\cos x}} & =e^{\sqrt{\cos x}} \frac{\mathrm{~d}}{\mathrm{~d} x} \sqrt{\cos x} \\
& =e^{\sqrt{\cos x}} \frac{1}{2 \sqrt{\cos x}} \frac{\mathrm{~d}}{\mathrm{~d} x} \cos x \\
& =-e^{\sqrt{\cos x}} \frac{\sin x}{2 \sqrt{\cos x}}
\end{aligned}
$$

(2) (Final, 2014) \star Let $y=x^{\log x}$. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x only.

Solution: By the logarithmic differentiation rule we have

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =y \frac{\mathrm{~d} \log y}{\mathrm{~d} x}=x^{\log x} \frac{\mathrm{~d}}{\mathrm{~d} x}(\log x \cdot \log x) \\
& =x^{\log x}\left(2 \log x \cdot \frac{1}{x}\right)=2 \log x \cdot x^{\log x-1}
\end{aligned}
$$

2. Implicit Differentiation

(3) Find the line tangent to the curve $y^{2}=4 x^{3}+2 x$ at the point $(2,6)$.

Solution: Differentiating with respect to x we find $2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=12 x^{2}+2$, so that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{6 x^{2}+1}{y}$. In particular at the point $(2,6)$ the slope is $\frac{25}{6}$ and the line is

$$
y=\frac{25}{6}(x-2)+6 .
$$

(4) (Final, 2015) Let $x y^{2}+x^{2} y=2$. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at the point $(1,1)$.

Solution: Differentiating with respect to x we find $y^{2}+2 x y \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 x y+x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$ along the curve. Setting $x=y=1$ we find that, at the indicated point,

$$
3+\left.3 \frac{\mathrm{~d} y}{\mathrm{~d} x}\right|_{(1,1)}=0
$$

so

$$
\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{(1,1)}=-1
$$

(5) (Final 2012) Find the slope of the line tangent to the curve $y+x \cos y=\cos x$ at the point $(0,1)$.

Solution: Differentiating with respect to x we find $y^{\prime}+\cos y-x \sin y \cdot y^{\prime}=-\sin x$, so that $y^{\prime}=-\frac{\sin x+\cos y}{1-x \sin y}=\frac{\sin x+\cos y}{x \sin y-1}$. Setting $x=0, y=1$ we get that at that point $y^{\prime}=\frac{\cos 1}{-1}=-\cos 1$.
(6) Find $y^{\prime \prime}$ (in terms of x, y) along the curve $x^{5}+y^{5}=10$ (ignore points where $y=0$).

Solution: Differentiating with respect to x we find $5 x^{4}+5 y^{4} y^{\prime}=0$, so that $y^{\prime}=-\frac{x^{4}}{y^{4}}$. Differentiating again we find

$$
y^{\prime \prime}=-\frac{4 x^{3}}{y^{4}}+\frac{4 x^{4} y^{\prime}}{y^{5}}=-\frac{4 x^{3}}{y^{4}}-\frac{4 x^{8}}{y^{9}}
$$

3. Inverse trig functions

(7) Draw on the following axes graphs of $\sin \theta$ on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \cos \theta$ on $[0, \pi]$ and $\tan \theta$ on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, then of their inverse functions

8) Evaluation
(a) (Final 2014) Evaluate $\arcsin \left(-\frac{1}{2}\right)$ and $\arcsin \left(\sin \left(\frac{31 \pi}{11}\right)\right)$.

Solution: $\sin \left(\frac{\pi}{6}\right)=\frac{1}{2}$ so $\arcsin \left(-\frac{1}{2}\right)=-\frac{\pi}{6}$. Also $\sin \left(\frac{31 \pi}{11}\right)=\sin \left(\frac{31 \pi}{11}-2 \pi\right)=\sin \left(\frac{9 \pi}{11}\right)=$ $\sin \left(\pi-\frac{9 \pi}{11}\right)=\sin \left(\frac{2 \pi}{11}\right)$ and $\frac{2 \pi}{11} \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ so $\arcsin \left(\sin \left(\frac{31 \pi}{11}\right)\right)=\frac{2 \pi}{11}$.
(b) (Final 2015) Simplify $\sin (\arctan 4)$

Solution: Consider the right-angled triangle with sides 4,1 and hypotenuse $\sqrt{1+4^{2}}=$ $\sqrt{17}$. Let θ be the angle opposite the side of length 4 . Then $\tan \theta=4$ and $\sin \theta=\frac{4}{\sqrt{17}}$ so $\sin (\arctan 4)=\sin \theta=\frac{4}{\sqrt{17}}$.
(c) Find $\tan (\arccos (0.4))$

Solution: Consider the right-angled triangle with sides $0.4, \sqrt{1-0.4^{2}}$ and hypotenuse 1 . Let θ be the angle between the side of length 0.4 and the hypotenuse. Then $\cos \theta=\frac{0.4}{1}=0.4$ and $\tan \theta=\frac{\sqrt{1-0.4^{2}}}{0.4}=\frac{\sqrt{0.84}}{0.4}=\sqrt{\frac{0.84}{0.16}}=\sqrt{5.25}$.
(9) Differentiation
(a) Find $\frac{\mathrm{d}}{\mathrm{d} x}(\arctan x)$

Solution: Let $\theta=\arctan x$. Then $x=\tan \theta$ so by the chain rule $1=\frac{d x}{d x}=\frac{d \tan \theta}{d x}=$ $\frac{d \tan \theta}{d \theta} \cdot \frac{d \theta}{d x}=\left(1+\tan ^{2} \theta\right) \frac{d \theta}{d x}$ so

$$
\frac{d(\arctan x)}{d x}=\frac{d \theta}{d x}=\frac{1}{1+\tan ^{2} \theta}=\frac{1}{1+x^{2}}
$$

(b) Find $\frac{\mathrm{d}}{\mathrm{d} x}(\arcsin (2 x))$

Solution: Since $\frac{\mathrm{d}}{\mathrm{d} x} \arcsin (x)=\frac{1}{\sqrt{1-x^{2}}}$, the chain rule gives

$$
\frac{\mathrm{d}}{\mathrm{~d} x}(\arcsin (2 x))=\frac{2}{\sqrt{1-4 x^{2}}}
$$

Alternatively, let $\theta=\arcsin 2 x$, so that $\sin \theta=2 x$. Differentiating both sides we get

$$
\cos \theta \cdot \frac{\mathrm{d} \theta}{\mathrm{~d} x}=2
$$

so that

$$
\frac{\mathrm{d} \theta}{\mathrm{~d} x}=\frac{2}{\cos \theta}=\frac{2}{\sqrt{1-\sin ^{2} \theta}}=\frac{2}{\sqrt{1-4 x^{2}}}
$$

(c) Find the line tangent to $y=\sqrt{1+(\arctan (x))^{2}}$ at the point where $x=1$.

Solution: Since $\frac{\mathrm{d}}{\mathrm{d} x} \arctan (x)=\frac{1}{1+x^{2}}$, the chain rule gives

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \sqrt{1+(\arctan (x))^{2}} & =\frac{1}{2 \sqrt{1+(\arctan (x))^{2}}} \cdot 2 \arctan (x) \cdot \frac{1}{1+x^{2}} \\
& =\frac{\arctan x}{\left(1+x^{2}\right) \sqrt{1+(\arctan (x))^{2}}}
\end{aligned}
$$

Now $\arctan 1=\frac{\pi}{4}$ so the line is

$$
y=\frac{\pi}{8 \sqrt{1+\frac{\pi^{2}}{16}}}(x-1)+\sqrt{1+\frac{\pi^{2}}{16}} .
$$

(d) Find y^{\prime} if $y=\arcsin \left(e^{5 x}\right)$. What is the domain of the functions y, y^{\prime} ?

Solution: From the chain rule we get

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \arcsin \left(e^{5 x}\right)=\frac{1}{\sqrt{1-e^{10 x}}} 5 e^{5 x}=\frac{5 e^{5 x}}{\sqrt{1-e^{10 x}}}
$$

The function y itself is defined when $-1 \leq e^{5 x} \leq 1$, that is when $5 x \leq 0$, that is when $x \leq 0$.
The derivative is defined when $-1<e^{10 x}<1$, that is when $x<0$. The point is that $\operatorname{since} \sin \theta$ has horizontal tangents at $\pm \frac{\pi}{2}, \arcsin x$ has vertical tangents at ± 1.
Solution: We can write the identity as $\sin y=e^{5 x}$ and differentiate both sides to get $y^{\prime} \cos y=$ $5 e^{5 x}$ so that

$$
y^{\prime}=\frac{5 e^{5 x}}{\cos y}=\frac{5 e^{5 x}}{\sqrt{1-\sin ^{2} y}}=\frac{5 e^{5 x}}{\sqrt{1-e^{10 x}}} .
$$

4. Related Rates

(10) A particle is moving along the curve $y^{2}=x^{3}+2 x$. When it passes the point $(1, \sqrt{3})$ we have $\frac{\mathrm{d} y}{\mathrm{~d} t}=1$. Find $\frac{\mathrm{d} x}{\mathrm{~d} t}$.

Solution: We differentiate along the curve with respect to time, finding

$$
2 y \frac{\mathrm{~d} y}{\mathrm{~d} t}=3 x^{2} \frac{\mathrm{~d} x}{\mathrm{~d} t}+2 \frac{\mathrm{~d} x}{\mathrm{~d} t}
$$

Plugging in $\frac{\mathrm{d} y}{\mathrm{~d} t}=1, x=1, y=\sqrt{3}$ we find: $2 \sqrt{3}=5 \frac{\mathrm{~d} x}{\mathrm{~d} t}$ so at that time we have

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{2 \sqrt{3}}{5}
$$

(11) (Final, 2015, variant) A conical tank of water is 6 m tall and has radius 1 m at the top.
(a) The drain is clogged, and is filling up with rainwater at the rate of $5 \mathrm{~m}^{3} / \mathrm{min}$. How fast is the water rising when its height is 5 m ?
Solution: The water fills a conical volume inside the drain. Suppose that at time t the height of the water is $h(t)$ and the radius at the surface of the water is $r(t)$. Then by similar triangles

$$
\frac{r(t)}{h(t)}=\frac{1}{6}
$$

We therefore have $r(t)=\frac{h(t)}{6}$. The volume of the water is therefore

$$
V(t)=\frac{1}{3} \pi r^{2} h=\frac{\pi}{108} h^{3}(t)
$$

Differentiating we find

$$
\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{\pi}{36} h^{2}(t) \frac{\mathrm{d} h}{\mathrm{~d} t}
$$

In particular, if $\frac{\mathrm{d} V}{\mathrm{~d} t}=5 \mathrm{~m}^{3} / \mathrm{min}$ and $h=5 \mathrm{~m}$ then

$$
\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{36 \cdot 5}{\pi \cdot 5^{2}}=\frac{36}{5 \pi} \frac{\mathrm{~m}}{\mathrm{~min}}
$$

(b) The drain is unclogged and water begins to drain at the rate of $\left(5+\frac{\pi}{4}\right) \mathrm{m}^{3} / \mathrm{min}$ (but rain is still falling). At what height is the water falling at the rate of $1 \mathrm{~m} / \mathrm{min}$?
Solution: We are now given $\frac{\mathrm{d} V}{\mathrm{~d} t}=-\frac{\pi}{4} \frac{\mathrm{~m}^{3}}{\mathrm{~min}}$ and $\frac{\mathrm{d} h}{\mathrm{~d} t}=-1 \frac{\mathrm{~m}}{\mathrm{~min}}$. Thus at the given time

$$
h(t)=\sqrt{\frac{36 \frac{\mathrm{~d} V}{\mathrm{~d} t}}{\pi \frac{\mathrm{~d} h}{\mathrm{~d} t}}}=\sqrt{\frac{-36 \pi}{4 \pi(-1)}}=\sqrt{9}=3 \mathrm{~m}
$$

