Math 100A – SOLUTIONS TO WORKSHEET 5 THE CHAIN RULE

1. The Chain Rule

- (1) We know $\frac{d}{dy}\sin y = \cos y$.
 - (a) \star Expand $\sin(y+h)$ to linear order in h. Write down the linear approximation to $\sin y$ about y=a.

Solution: $\sin(y+h) \approx \sin y + h \cos y$ and $\sin y \approx \sin a + (y-a) \cos a$.

(b) **Now let $F(x) = \sin(3x)$. Expand F(x+h) to linear order in h. What is the derivative of $\sin 3x$?

Solution: $F(x+h) = \sin(3(x+h)) = \sin(3x+3h)$ so we use y=3x in the previous example to get

$$F(x+h) = \sin(3(x+h))$$

$$= \sin(3x+3h)$$

$$\approx \sin(3x) + (3h)\cos(3x)$$

$$= \sin(3x) + (3\cos(3x))h$$

so the derivative is $3\cos(3x)$.

- (2) Write each function as a composition and differentiate
 - (a) $\star e^{3x}$

Solution: This is f(g(x)) where g(x) = 3x and $f(y) = e^y$. The derivative is thus

$$e^{3x} \cdot \frac{\mathrm{d}(3x)}{\mathrm{d}x} = 3e^{3x} \,.$$

(b) $\star \sqrt{2x+1}$

Solution: This is f(g(x)) where g(x) = 2x + 1 and $f(y) = \sqrt{y}$. Thus

$$\frac{\mathrm{d}f(g(x))}{\mathrm{d}x} = f'(g(x))g'(x) = \frac{1}{2\sqrt{g}} \cdot 2 = \frac{1}{\sqrt{2x+1}}.$$

(c) (Final, 2015) $\star \sin(x^2)$

Solution: This is f(g(x)) where $g(x) = x^2$ and $f(y) = y^2$. The derivative is then

$$\cos(x^2) \cdot 2x = 2x \cos(x^2) \,.$$

(d) $\star (7x + \cos x)^n$.

Solution: This is f(g(x)) where $g(x) = 7x + \cos x$ and $f(y) = y^n$. The derivative is thus

$$n\left(7x+\cos x\right)^{n-1}\cdot\left(7-\sin x\right).$$

(3) (Final, 2012) ** Let $f(x) = g(2\sin x)$ where $g'(\sqrt{2}) = \sqrt{2}$. Find $f'(\frac{\pi}{4})$.

Solution: By the chain rule, $f'(x) = g'(2\sin x) \cdot \frac{d}{dx}(2\sin x) = 2g'(2\sin x)\cos x$. In particular,

$$f'\left(\frac{\pi}{4}\right) = 2g'\left(2\sin\frac{\pi}{4}\right)\cos\frac{\pi}{4} = 2g'\left(2\frac{\sqrt{2}}{2}\right) \cdot \frac{\sqrt{2}}{2}$$
$$= 2\sqrt{2} \cdot \frac{\sqrt{2}}{2} = 2.$$

(4) Differentiate

(a)
$$\star 7x + \cos(x^n)$$

Solution: We apply linearity and then the chain rule:

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(7x + \cos(x^n) \right) = \frac{\mathrm{d}(7x)}{\mathrm{d}x} + \frac{\mathrm{d}\cos(x^n)}{\mathrm{d}x}$$
$$= 7 + \frac{\mathrm{d}\cos(x^n)}{\mathrm{d}(x^n)} \cdot \frac{\mathrm{d}(x^n)}{\mathrm{d}x}$$
$$= 7 - \sin(x^n) \cdot nx^{n-1}.$$

(b)
$$\star e^{\sqrt{\cos x}}$$

Solution: We repeatedly apply the chain rule:

$$\frac{\mathrm{d}}{\mathrm{d}x} e^{\sqrt{\cos x}} = e^{\sqrt{\cos x}} \frac{\mathrm{d}}{\mathrm{d}x} \sqrt{\cos x}$$

$$= e^{\sqrt{\cos x}} \frac{1}{2\sqrt{\cos x}} \frac{\mathrm{d}}{\mathrm{d}x} \cos x$$

$$= -e^{\sqrt{\cos x}} \frac{\sin x}{2\sqrt{\cos x}}.$$

(c)
$$\star$$
 (Final 2012) $e^{(\sin x)^2}$

Solution: By the chain rule:

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(e^{(\sin x)^2} \right) = e^{(\sin x)^2} \frac{\mathrm{d}}{\mathrm{d}x} \left((\sin x)^2 \right)$$

$$= e^{(\sin x)^2} 2 \sin x \frac{\mathrm{d}}{\mathrm{d}x} \sin x$$

$$= e^{(\sin x)^2} 2 \sin x \cos x$$

$$= e^{(\sin x)^2} \sin(2x).$$

(5) ** Suppose f, g are differentiable functions with $f(g(x)) = x^3$. Suppose that f'(g(4)) = 5. Find

Solution: Applying the chain rule we have $f'(g(x)) \cdot g'(x) = 3x^2$. Plugging in x = 4 we get $5g'(4) = 3 \cdot 4^2$ and hence $g'(4) = \frac{48}{5}$.

2. Logarithmic differentiation

$$(6) \star \log\left(e^{10}\right) = \log(2^{100}) =$$

Solution: $\log e^{10} = 10$ while $\log(2^{100}) = 100 \log 2$

(7) ★ Differentiate

(a)
$$\frac{\mathrm{d}(\log(ax))}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}t}\log(t^2 + 3t) =$$

 $\frac{\mathrm{d}(\log(ax))}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}t}\log\left(t^2+3t\right) =$ **Solution:** By the chain rule, the derivatives are: $\frac{1}{ax} \cdot a = \frac{1}{x}$ and $\frac{1}{t^2+3t} \cdot (2t+3) = \frac{2t+t}{t^2+3t}$. We can also use the logarithm laws first: $\log(ax) = \log a + \log x$ so $\frac{\mathrm{d}}{\mathrm{d}x}(\log ax) = \frac{\mathrm{d}}{\mathrm{d}x}(\log a) + \frac{\mathrm{d}}{\mathrm{d}x}(\log x) = \frac{1}{x}$ since $\log a$ is constant if a is. Similarly, $\log(t^2+3t) = \log t + \log(t+3)$ so its derivative is $\frac{1}{t} + \frac{1}{t+3}$.

(b)
$$\star \frac{\mathrm{d}}{\mathrm{d}x} x^2 \log(1+x^2) = \frac{\mathrm{d}}{\mathrm{d}r} \frac{1}{\log(2+\sin r)} =$$

 $\star \frac{\mathrm{d}}{\mathrm{d}x} x^2 \log(1+x^2) = \frac{\frac{\mathrm{d}}{\mathrm{d}r} \frac{1}{\log(2+\sin r)}}{\mathrm{Solution:}} =$ Solution: Applying the product rule and then the chain rule we get: $\frac{\mathrm{d}}{\mathrm{d}x} \left(x^2 \log(1+x^2) \right) =$ $2x \log(1+x^2) + x^2 \frac{1}{1+x^2} \cdot 2x = 2x \log(1+x^2) + \frac{2x^3}{1+x^2}$. Using the quotient rule and the chain rule

$$\frac{\mathrm{d}}{\mathrm{d}r} \frac{1}{\log(2 + \sin r)} = -\frac{1}{\log^2(2 + \sin r)} \cdot \frac{1}{2 + \sin r} \cdot \cos r = -\frac{\cos r}{(2 + \sin r)\log^2(2 + \sin r)}.$$

(8) ** (Logarithmic differentiation) differentiate
$$y = (x^2 + 1) \cdot \sin x \cdot \frac{1}{\sqrt{x^3 + 3}} \cdot e^{\cos x}$$
.

Solution: We have

$$\log y = \log (x^2 + 1) + \log(\sin x) + \log \left(\frac{1}{\sqrt{x^3 + 3}}\right) + \log (e^{\cos x})$$
$$= \log (x^2 + 1) + \log (\sin x) - \frac{1}{2} \log (x^3 + 3) + \cos x.$$

Differentiating with respect to x gives:

$$\frac{y'}{y} = \frac{2x}{x^2 + 1} + \frac{\cos x}{\sin x} - \frac{1}{2} \frac{3x^2}{x^3 + 3} - \sin x$$

and solving for y' finally gives

$$y' = \left(\frac{2x}{x^2 + 1} + \frac{\cos x}{\sin x} - \frac{3x}{2(x^3 + 3)} - \sin x\right) \cdot (x^2 + 1) \cdot \sin x \cdot \frac{1}{\sqrt{x^3 + 3}} \cdot e^{\cos x}.$$

- (9) Differentiate using $f' = f \times (\log f)'$
 - (a) $\star x^n$

Solution: If $y = x^n$ then $\log y = n \log x$. Differentiating with respect to x gives $\frac{1}{y}y' = \frac{n}{x}$ so

Solution: By the rule, $\frac{d}{dx}(x^n) = x^n \frac{d}{dx}(\log(x^n)) = x^n \left(\frac{n}{x}\right) = nx^{n-1}$.

If $y = x^x$ then $\log y = x \log x$. Differentiating with respect to x gives $\frac{1}{y}y' =$

 $\log x + x \cdot \frac{1}{x} = \log x + 1 \text{ so } y' = y \left(\log x + 1\right) = x^x \left(\log x + 1\right).$ **Solution:** By the rule, $\frac{d}{dx}(x^x) = x^x \frac{d}{dx}(\log(x^x)) = x^x (\log x + 1).$ **Solution:** We have $x^x = \left(e^{\log x}\right)^x = e^{x \log x}$. Applying the chain rule we now get $(x^x)' = x^x \log x$. $e^{x \log x} (\log x + 1) = x^x (\log x + 1).$

(c) $\star\star (\log x)^{\cos x}$

Solution: By the logarithmic differentiation rule we have

$$\frac{\mathrm{d}}{\mathrm{d}x} (\log x)^{\cos x} = (\log x)^{\cos x} \cdot \frac{\mathrm{d}}{\mathrm{d}x} (\cos x \log(\log x))$$

$$= -\sin x \log\log x (\log x)^{\cos x} + (\log x)^{\cos x} \cos x \frac{1}{\log x} \frac{1}{x}$$

$$= -\sin x \log\log x (\log x)^{\cos x} + \cos x (\log x)^{\cos x - 1} \frac{1}{x}.$$

(d) (Final, 2014) * Let $y = x^{\log x}$. Find $\frac{\mathrm{d}y}{\mathrm{d}x}$ in terms of x only. **Solution:** By the logarithmic differentiation rule we have

$$\frac{\mathrm{d}y}{\mathrm{d}x} = y \frac{\mathrm{d}\log y}{\mathrm{d}x} = x^{\log x} \frac{\mathrm{d}}{\mathrm{d}x} (\log x \cdot \log x)$$
$$= x^{\log x} \left(2\log x \cdot \frac{1}{x} \right) = 2\log x \cdot x^{\log x - 1}.$$

3. More problems

(10) **Let $f(x) = g(x)^{h(x)}$. Find a formula for f' in terms of g' and h'.

Solution: By the logarithmic differentiation rule we have $f' = f \cdot (h \log a)'$

$$f' = f \cdot (h \log g)'$$

$$= f \left(h' \log g + \frac{h}{g} g' \right)$$

$$= h \cdot g^{h-1} \cdot g' + g^h \log g \cdot h'.$$

Observe that this is the sum of what we'd get by applying the power law rule and the exponential

(11) Let $f(\theta) = \sin^2 \theta + \cos^2 \theta$. Find $\frac{df}{d\theta}$ without using trigonometric identities. Evaluate f(0) and conclude that $\sin^2 \theta + \cos^2 \theta = 1$ for all θ .

Solution: By the chain rule $\frac{d}{d\theta} (\sin \theta)^2 = 2 \sin \theta \cos \theta$ and $\frac{d}{d\theta} (\cos \theta)^2 = 2 \cos \theta (-\sin \theta)$ so

$$\frac{df}{d\theta} = 2\sin\theta\cos\theta - 2\sin\theta\cos\theta = 0,$$

It follows that f is constant; since $f(0) = (\sin 0)^2 + (\cos 0)^2 = 1$ we have $f(\theta) = 1$ for all θ , which is the claim.

(12) ("Inverse function rule") suppose f(g(x)) = x for all x.

(a) Show that $f'(g(x)) = \frac{1}{g'(x)}$.

Solution: Applying the chain rule we have $f'(g(x)) \cdot g'(x) = 1$.

(b) Suppose $g(x) = e^x$, $f(y) = \log y$. Show that f(g(x)) = x and conclude that $(\log y)' = \frac{1}{y}$. Solution: $f(g(x)) = \log (e^x) = x$. We then have $f'(e^x) = \frac{1}{g'(x)} = \frac{1}{e^x}$ so $f'(y) = \frac{1}{y}$ for all y > 0.

(c) Suppose $g(\theta) = \sin \theta$, $f(x) = \arcsin x$ so that $f(g(\theta)) = \theta$. Show that $f'(x) = \frac{1}{\sqrt{1-x^2}}$. Solution: We have $f'(\sin \theta) = \frac{1}{\cos \theta} = \frac{1}{\sqrt{1-\sin^2 \theta}}$ so $f'(x) = \frac{1}{\sqrt{1-x^2}}$ for -1 < x < 1.

(13) (Final, 2015) ** Let $xy^2 + x^2y = 2$. Find $\frac{dy}{dx}$ at the point (1,1).

Solution: Differentiating with respect to x we find $y^2 + 2xy\frac{dy}{dx} + 2xy + x^2\frac{dy}{dx} = 0$ along the curve. Setting x = y = 1 we find that, at the indicated point,

$$3 + 3\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{(1,1)} = 0$$

so

$$\left. \frac{\mathrm{d}y}{\mathrm{d}x} \right|_{(1,1)} = -1.$$