Math 100A – WORKSHEET 4 COMPUTING DERIVATIVES

1. Review of the derivative

- (1) Expand f(x+h) to linear order in h for the following functions and read the derivative off: (a) $\star f(x) = bx$
 - (b) $\star g(x) = ax^2$

(c) $\star h(x) = ax^2 + bx$.

(d) $\star\star i(x) = \frac{1}{b+x}$

(e) *** $j(x) = 4x^4 + 5x$ (hint: use the known linear approximation to $2x^2$)

2. Arithmetic of derivatives

Fact.
$$(af + bg)' = af' + bg'$$
, $(fg)' = f'g + fg'$, $\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$ $\frac{d}{dx}x^n = nx^{n-1}$.

(2) Differentiate

(a)
$$\star f(x) = 6x^{\pi} + 2x^{e} - x^{7/2}$$

(b) \star (Final, 2016) $g(x) = x^2 e^x$ (and then also $x^a e^x$)

(c)
$$\star$$
 (Final, 2016) $h(x) = \frac{x^2+3}{2x-1}$

(d)
$$\star \frac{x^2 + A}{\sqrt{x}}$$

(3) \star Let $f(x) = \frac{x}{\sqrt{x}+A}$. Given that $f'(4) = \frac{3}{16}$, give a quadratic equation for A.

(4) Suppose that f(1) = 1, g(1) = 2, f'(1) = 3, g'(1) = 4.

(a) \star What are the linear approximations to f and g at x=1? Use them to find the linear approximation to fg at x=1.

(b) \star Find (fg)'(1) and $\left(\frac{f}{g}\right)'(1)$.

(5) Evaluate (a) \star $(x \cdot x)'$ and $(x') \cdot (x')$. What did we learn?

(b) $\star \left(\frac{x}{x}\right)'$ and $\frac{\left(x'\right)}{\left(x'\right)}$. What did we learn?

- (6) The Lennart–Jones potential $V(r) = \epsilon \left(\left(\frac{R}{r} \right)^{12} 2 \left(\frac{R}{r} \right)^{6} \right)$ models the electrostatic potential energy of a diatomic molecule. Here r > 0 is the distance between the atoms and $\epsilon, R > 0$ are constants. (a) \star What are the asymptotics of V(r) as $r \to 0$ and as $r \to \infty$?

(b) Sketch a plot of V(r).

(c) Find the derivative $\frac{dV}{dr}(r) =$

(d) Where is V(r) increasing? Find its minimum location and value.