Math 100A - SOLUTIONS TO WORKSHEET 3 THE DERIVATIVE

1. Three views of the derivative

(1) Let $f(x) = x^2$, and let a = 2. Then (2,4) is a point on the graph of y = f(x).

(a) Let (x, x^2) be another point on the graph, close to (2, 4). What is the slope of the line connecting the two? What is the limit of the slopes as $x \to 2$?

Solution: The slope of the line connecting two points is $\frac{\Delta y}{\Delta x}$, here $\frac{x^2-4}{x-2}=\frac{(x-2)(x+2)}{x-2}=x+2$, which tends to |4| as $x \to 2$.

(b) Let h be a small quantity. What is the asymptotic behaviour of f(2+h) as $h \to 0$? What about f(2+h) - f(2)?

Solution: $f(2+h) = (2+h)^2 = 4+4h+h^2 \sim 4 = f(2)$ as $h \to 0$ but then f(2+h) - f(2) = f(2+h) = f($4h + h^2 \sim 4 h \text{ as } h \to 0.$

(c) What is $\lim_{h\to 0} \frac{(2+h)^2-2^2}{h}$?

Solution: $\frac{(2+h)^2-2^2}{h} = \frac{4h+h^2}{h} = 4+h \xrightarrow[h\to 0]{} 4$

(d) What is the equation of the line tangent to the graph of y = f(x) at (2,4)?

Solution: We need a line of slope 4 through the point (2,4) so its equation is y=4(x-2)+4.

(2) ** An enzymatic reaction occurs at rate k(T) = T(40 - T) + 10T where T is the temperature in degrees celsius. The current temperature of the solution is 20°C. Should we increase or decrease the temperature to increase the reaction rate?

We have $P(T) = 50T - T^2$ so P(20) = 600. If we change the temperature to Solution: T = 20 + h we'd have

$$P(20+h) = 50 (20+h) - (20+h)^{2}$$

$$= 1000 + 50h - 400 - 40h - h^{2}$$

$$= 600 + 10h - h^{2}$$

$$\approx 600 + 10h$$

to first order in h. We conclude that increasing the temperature by h units will increase the rate by about 10h – and in particular the temperature should be increased.

Solution: Once we know about the derivative, we can write P'(T) = 50 - 2T so P'(20) = 10 > 0and the function is increasing about 20.

2. Definition of the derivative

Definition. $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$ or $f(a+h) \approx f(a) + f'(a)h$

- (3) Find f'(a) if

Solution: $\lim_{h\to 0} \frac{(3+h)^2 - (3)^2}{h} = \lim_{h\to 0} \frac{9+6h+h^2-9}{h} = \lim_{h\to 0} \frac{6h+h^2}{h} = \lim_{h\to 0} (6+h) = 6.$ Solution: $(3+h)^2 = 3+6h+h^2 \approx 3+6h$ to second order so f'(3)=6. (b) ** $f(x) = \frac{1}{x}$, any a.

Solution: $\lim_{h\to 0} \frac{\frac{1}{a+h}-\frac{1}{a}}{h} = \lim_{h\to 0} \frac{1}{h} \left(\frac{a-(a+h)}{a(a+h)}\right) = \lim_{h\to 0} \frac{-h}{h\cdot a(a+h)} = -\lim_{h\to 0} \frac{1}{a(a+h)} = \lim_{h\to 0} \frac{1}{a(a+h)} = \lim_{h\to$

 $-\frac{1}{a^2}.$ Solution: $\frac{1}{a+h} - \frac{1}{a} = \frac{a}{a(a+h)} - \frac{a+h}{a(a+h)} = -\frac{h}{a(a+h)} \sim -\frac{h}{a^2}$ so $f'(a) = -\frac{1}{a^2}$.

Date: 20/9/2023, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

(c) **
$$f(x) = x^3 - 2x$$
, any a (you may use $(a+h)^3 = a^3 + 3a^2h + 3ah^2 + h^3$). Solution: We have

$$\frac{(a+h)^3 - 2(a+h) - a^3 + 2a}{h} = \frac{a^3 + 3a^2h + 3ah^2 + h^3 - 2a - 2h - a^3 + 2a}{h}$$
$$= \frac{3a^2h + 3ah^2 + h^3 - 2h}{h}$$
$$= 3a^2 - 2 + 3ah + h^2 \xrightarrow[h \to 0]{} 3a^2 - 2.$$

Solution: We have

$$(a+h)^3 - 2(a+h) = a^3 + 3a^2h + 3ah^2 + h^3 - 2a - 2h$$
$$= (a^3 - 2a) + (3a^2 - 2)h + 3ah^2 + h^3$$
$$\approx (a^3 - 2a) + (3a^2 - 2)h$$

so the derivative is $3a^2 - 2$.

(4) ** Express the limits as derivatives: $\lim_{h\to 0} \frac{\cos(5+h)-\cos 5}{h}$, $\lim_{x\to 0} \frac{\sin x}{x}$ Solution: These are the derivative of $f(x) = \cos x$ at the point a=5 and of $g(x) = \sin x$ at the point a=0.

(5) $\star \star \star$ (Final, 2015, variant – gluing derivatives) Is the function

$$f(x) = \begin{cases} x^2 & x \le 0\\ x^2 \cos \frac{1}{x} & x > 0 \end{cases}$$

differentiable at x = 0?

Solution: We have f(0) = 0, so we'd have $f'(0) = \lim_{x\to 0} \frac{f(x)-f(0)}{x} = \lim_{x\to 0} \frac{f(x)}{x}$ provided the limit exists, and since we have different expressions for f(x) on both sides of 0 we compute the limit as two one-sided limits. On the left we have

$$\lim_{x\to 0^-}\frac{f(x)}{x}=\lim_{x\to 0^-}\frac{x^2}{x}=\lim_{x\to 0^-}x=0\,.$$

Alternatively, we could recognize the limit as giving the derivative of $f(x) = x^2$ at x = 0. Using differentiation rules (to be covered later in the course) we know that $\left[\frac{d}{dx}x^2\right]_{x=0} = [2x]_{x=0} = 0$ and it would again follow that $\lim_{x\to 0^-} \frac{f(x)}{x} = 0$.

On the right we have

$$\lim_{x \to 0^+} \frac{f(x)}{x} = \lim_{x \to 0^+} \frac{x^2 \cos \frac{1}{x}}{x} = \lim_{x \to 0^+} x \cos \left(\frac{1}{x}\right) = 0$$

since $x \to 0$ while $\cos\left(\frac{1}{x}\right)$ is bounded. Thus the function is differentiable and its derivative is zero.

3. The tangent line

(6) \star (Final, 2015) Find the equation of the line tangent to the function $f(x) = \sqrt{x}$ at (4,2).

Solution: $f'(x) = \frac{1}{2\sqrt{x}}$, so the slope of the line is $f'(4) = \frac{1}{4}$, and the equation for the line line itself is $y - 2 = \frac{1}{4}(x - 4)$ or $y = \frac{1}{4}(x - 4) + 2$ or $y = \frac{1}{4}x + 1$.

(7) $\star\star$ (Final 2015) The line y=4x+2 is tangent at x=1 to which function: x^3+2x^2+3x , x^2+3x+2 , $2\sqrt{x+3}+2$, x^3+x^2-x , x^3+x+2 , none of the above?

Solution: The line has slope 4 and meets the curve at (1,6). The last two functions don't evaluate to 6 at 1. We differentiate the first three.

$$\frac{d}{dx}|_{x=1} (x^3 + 2x^2 + 3x) = (3x^2 + 4x + 3)|_{x=1} = 10$$

$$\frac{d}{dx}|_{x=1} (x^2 + 3x + 2) = (2x + 3)|_{x=1} = 5$$

$$\frac{d}{dx}|_{x=1} (2\sqrt{x+3} + 2) = \left(\frac{2}{2\sqrt{x+3}}\right)|_{x=1} = \frac{1}{2}.$$

The answer is "none of the above".

(8) $\star\star\star$ Find the lines of slope 3 tangent to the curve $y=x^3+4x^2-8x+3$.

Solution: $\frac{dy}{dx} = 3x^2 + 8x - 8$, so the line tangent at (x, y) has slope 3 iff $3x^2 + 8x - 8 = 3$, that is iff $3(x^2 - 1) + 8(x - 1) = 0$. We can factor this as (x - 1)(3x + 11) = 0 so the x-coordinates of the points of tangency are $1, -\frac{11}{3}$ and the lines are:

$$y = 3(x - 1)$$

$$y = 3(x + \frac{11}{3}) + \left(\left(\frac{11}{3}\right)^3 + 4\left(\frac{11}{3}\right)^2 - 8\left(\frac{11}{3}\right) + 3\right).$$

(9) $\star\star\star$ The line y=5x+B is tangent to the curve $y=x^3+2x$. What is B?

Solution: At the point (x, y) the curve has slope $\frac{dy}{dx} = 3x^2 + 2$, so the curve has slope 5 at the points where $x = \pm 1$, that is the points (-1, -3) and (1, 3). The line needs to meet the curve at the point, so there are two solutions:

$$y = 5x + 2$$
 (tangent at $(-1, -3)$)

$$y = 5x - 2 \qquad \text{(tangent at } (1,3))$$

4. Linear approximation

Definition. $f(a+h) \approx f(a) + f'(a)h$

- (10) Estimate
 - (a) $\star \sqrt{1.2}$

Solution: Let $f(x) = \sqrt{x}$ so that $f'(x) = \frac{1}{2\sqrt{x}}$. Then f(1) = 1 and $f'(1) = \frac{1}{2}$ so $f(1.2) \approx f(1) + f'(1) \cdot 0.2 = 1 + \frac{1}{2} \cdot 0.2 = 1.1$.

Better: f(1.21) = 1.1 and $f'(1.21) = \frac{1}{2.2}$ so $f(1.2) = f(1.21 - 0.01) \approx 1.1 - 0.01 \cdot \frac{1}{2.2} \approx 1.09545$.

(b) \star (Final, 2015) $\sqrt{8}$

Solution: Using the same f we have $f(9-1) \approx f(9) + f'(9) \cdot (-1) = 3 - \frac{1}{6} = 2\frac{5}{6}$.

(c) \star (Final, 2016) $(26)^{1/3}$

Solution: Let $f(x) = x^{1/3}$ so that $f'(x) = \frac{1}{3}x^{-2/3}$. Then f(27) = 3 and $f'(27) = \frac{1}{3 \cdot 27^{2/3}} = \frac{1}{27}$ so

$$f(26) = f(27 - 1) \approx f(27) + (-1) \cdot f'(27) = 3 - \frac{1}{27} = 2\frac{26}{27}$$