
Lior Silberman’s Math 412: Problem Set 9 (due 24/3/2023)

Practice: Norms

P1. Call two norms ‖·‖1 , ‖·‖2 on V equivalent if there are constants c, C > 0 such that for all v ∈ V ,

c ‖v‖1 ≤ ‖v‖2 ≤ C ‖v‖1 .
(a) Show that this is an equivalence relation.

(b) Suppose the two norms are equivalent and that limn→∞ ‖vn‖1 = 0 (that is, that vn
‖·‖1−−−−→
n→∞

0). Show

that limn→∞ ‖vn‖2 = 0 (that is, that vn
‖·‖2−−−−→
n→∞

0).
(*c) Show the converse of (b) also holds. In other words, two norms are equivalent iff they determine

the same notion of convergence.

Norms
1. Let f(x) = x2 on [−1, 1].

(a) For 1 ≤ p <∞. Calculate ‖f‖Lp =
(∫ 1

−1 |f(x)|p dx
)1/p

.
(b) Calculate ‖f‖L∞ = sup {|f(x)| : −1 ≤ x ≤ 1}. Check that limp→∞ ‖f‖Lp = ‖f‖∞.

(c) Calculate ‖f‖H2 =
(
‖f‖2L2 + ‖f ′‖2L2 + ‖f ′′‖2L2

)1/2
.

SUPP Show that the H2 norm is equivalent to the norm
(
‖f‖2L2 + ‖f ′′‖2L2

)1/2
.

2. Let A ∈Mn(R). Write ‖A‖p for its `p → `p operator norm.
(a) Show ‖A‖1 = maxj

∑n
i=1 |aij |.

(b) Show that ‖A‖∞ = maxi

∑n
j=1 |aij |.

RMK See below on duality.

3. The spectral radius ofA ∈Mn(C) is the magnitude of its largest eigenvalue: ρ(A) = max {|λ|λ ∈ Spec(A)}.

(a) Show that for any norm ‖·‖ on Cn and any A ∈Mn(C), ρ(A) ≤ ‖A‖.
(b) Suppose that A is diagonable. Show that there is a norm on Cn such that ‖A‖ = ρ(A).
(*c) Show that if A is Hermitian then ‖A‖2 = ρ(A).
(d) Show that ifA,B are similar, and ‖·‖ is any norm in Cn, then limm→∞ ‖Am‖1/m = limm→∞ ‖Bm‖1/m

(in the sense that, if one limit exists, then so does the other, and they are equal).
(**e) Show that for any norm on Cn and any A ∈Mn(C), we have limm→∞ ‖Am‖1/m = ρ(A).

Supplement: one more norm

A. The Hilbert–Schmidt norm on Mn(C) is ‖A‖HS =
(∑n

i,j=1 |aij |
2
)1/2

.

PRAC Verify that ‖A‖HS =
(
Tr(A†A)

)1/2.
(a) Show that ‖·‖HS is, indeed, a norm.
(b) Show that ‖A‖2 ≤ ‖A‖HS.

Supplement: Norms and constructions

B. (Direct sum) Let {(Vi, ‖·‖i)}
n
i=1

be normed spaces, and let 1 ≤ p ≤ ∞. For v = (vi) ∈
⊕n

i=1 Vi define

‖v‖ =

(
n∑

i=1

‖vi‖
p
i

)1/p

.

Show that this defines a norm on
⊕n

i=1 Vi.
DEF This operation is called the Lp-sum of the normed spaces.
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C. (Quotient) Let (V, ‖·‖) be a normed space, and let W ⊂ V be a subspace. For v + W ∈ V/W set
‖v +W‖V/W = inf {‖v + w‖ : w ∈W}.
(a) Show that ‖·‖V/W is 1-homogenous and satisfies the triangle inequality (a “seminorm”).
(b) Show that ‖v +W‖V/W = 0 iff v is in the closure of W , so that ‖·‖V/W is a norm iff W is closed in

V .

For duality in norms see problems A, B. Norming tensor product spaces is complicated.

D. Let V be a normed space. The operator norm on V ∗ = Homcts(V, F ) is called the dual norm.
(a) Let V = Rn and identify V ∗ with Rn via the usual pairing. Show that the norm on V ∗ dual to the

`1-norm is the `∞ norm and vice versa. Show that the `2-norm is self-dual.
(b) Use A(a),(b) to show that the dual to the `p norm on Rn is the `q norm where 1

p + 1
q = 1.

(c) Let U be another normed space and let T : U → V be bounded. Let T ′ : V ′ → U ′ be the algebraic
dual map as defined in this course. Show that for every v∗ ∈ V ∗ ⊂ V ′, T ′v∗ ∈ U∗ (that is, it is
continuous). We write T ∗ : V ∗ → U∗ for the dual map restricted to continuous functionals.

(d) Show that T ∗ is itself bounded, in that ‖T ∗‖V ∗→U∗ ≤ ‖T‖U→V .

E. A seminorm on a vector space V is a map V → R≥0 that satisfies all the conditions of a norm except
that it can be zero for non-zero vectors.
(a) Show that for any f ∈ V ′, ϕ(v) = |f(v)| is a seminorm.
(b) Construct a seminorm on R2 not of this form.
(c) Let Φ be a family of seminorms on V which is pointwise bounded. Show that ϕ̄(v) = sup {ϕ(v) | ϕ ∈ Φ}

is again a seminorm.

Supplementary problem: Continuity

F. Let V,W be normed vector spaces, equipped with the metric topology coming from the norm. Let
T ∈ HomF (V,W ). Show that the following are equivalent:
(1) T is continuous.
(2) T is continuous at zero.
(3) T is bounded : ‖T‖V→W <∞, that is: for some C > 0 and all v ∈ V , ‖Tv‖W ≤ C ‖v‖V .
Hint: the same idea is used in problem P1

Supplementary problems: Completeness
G. Let {vn}

∞
n=1 be a Cauchy sequence in a normed space. Show that {‖vn‖}

∞
n=1 ⊂ R≥0 is a Cauchy

sequence.

H. (The completion) Let (X, d) be a metric space.
(a) Let {xn} , {yn} ⊂ X be two Cauchy sequences. Show that {d(xn, yn)}∞n=1 ⊂ R is a Cauchy sequence.
DEF Let

(
X̃, d̃

)
denote the set of Cauchy sequences inX with the distance d̃

(
x, y
)

= limn→∞ d (xn, yn).

(b) Show that d̃ satisfies all the axioms of a metric except that it can be non-zero for distinct sequences.
(c) Show that the relation x ∼ y ⇐⇒ d̃

(
x, y
)

= 0 is an equivalence relation.
(d) Let X̂ = X̃/ ∼ be the set of equivalence classes. Show that d̃ : X̃ × X̃ → R≥0 descends to a

well-defined function d̂ : X̂ × X̂ → R≥0 which is a metric.
(e) Show that

(
X̂, d̂

)
is a complete metric space.

DEF For x ∈ X let ι(x) ∈ X̂ be the equivalence class of the constant sequence x.
(f) Show that ι : X → X̂ is an isometric embedding with dense image.
(g) (Universal property) Show that for any complete metric space (Y, dY ) and any uniformly continuous

f : X → Y there is a unique extension f̂ : X̂ → Y such that f̂ ◦ ι = f .
(h) Show that triples

(
X̂, d̂, ι

)
satisfying the property of (g) are unique up to a unique isomorphism.
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I. (Complete fields) An absolute value on a field F is a map |·| : F → R≥0 such that (a) |xy| = |x| |y| (b)
|x| = 0↔ x = 0 (c) |x+ y| ≤ |x|+ |y|.
DEF Fix a prime number p. For x ∈ Q× write x = a

b p
k for some non-zero a, b ∈ Z prime to p and k ∈ Z

and set |x|p = p−k (also, |0|p = 0).

(a) Show that |·|p is an absolute value onQ satisfying the ultrametric inequality |x+ y|p ≤ max
{
|x|p , |y|p

}
.

(b) Let |·| be an absolute value on F . Show that d(x, y) = |x− y| is a metric on F .
(c) Show that (with respect to the metric of (b)) the absolute value is uniformly continuous F → R≥0,

addition is a uniformly continuous map F × F → F , and that for any r > 0 multiplication is a
uniformly continuous map B(0, r)×B(0, r)→ B(0, r2).

(d) Let F̂ be the completion of F wrt |·|. Show that the absolute value and the operations of addition
and multiplication extend to maps |·| : F̂ → R≥0, +, · : F̂ × F̂ → F̂ giving it the structure of a ring
with an absolute value |·|.

(e) Show that every non-zero element of F̂ has an inverse, that is that F̂ is a field.
DEF Write Qp for the completion of Qwrt |·|.
FACT Closed bounded sets in Qp are compact, as in R.
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