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Lior Silberman’s Math 223: Problem Set 3 (due 2/2/2022)

Practice problems (recommended, but do not submit)

Section 1.6, Problems 1 (except (g)), 2-5, 7,8, 11,12, 22*, 24*.

M1. (§1.6 E8)Let W =
{

x ∈ R5 | ∑5
i=1 xi = 0

}
be the set of vectors in R5 whose co-ordinates sum to

zero. It is a subspace (but you don’t have to check this). The following 8 vectors span W (you don’t
have to check that either). Find a subset of them which forms a basis for W . u1 = (2,−3,4,−5,2),
u2 = (−6,9,−12,15,−6), u3 = (3,−2,7,−9,1), u4 = (2,−8,2,−2,6), u5 = (−1,1,2,1,−3), u6 =
(0,−3,−18,9,12), u7 = (1,0,−2,3,−2), u8 = (2,−1,1,−9,7).

M2. Find a basis for the subspace
{

x ∈ R4 | x1 +3x2− x3 = 0
}

of R4. What is the dimension?

Basis and dimension

1. Recall the space Mn(R) of n×n matrices: each element is a square n×n array of real numbers, with
addition and scalar multiplication entrywise. For A ∈ Mn(R) define its transpose AT by reflecting

along the main diagonal:
(
AT)

i j = A ji. For example

1 2 3
4 5 6
7 8 9

T

=

1 4 7
2 5 8
3 6 9

. Call a matrix A

symmetric if AT = A (for example
(

2 3
3 4

)
is symmetric but

(
1 2
3 1

)
isn’t). The set of symmetric

matrices S⊂Mn(R) is a subspace (we’ll prove this later). Find a basis for this space and compute its
dimension.

*2. Let R(x) be the space of functions of the form f
g where f ,g ∈ R[x] are polynomials such that g 6= 0.

R(x) is called “the field of rational functions in one variable, and has the same relation to the ring of
polynomials R[x] that the rational numbers Q have to the ring of integers Z. We will consider R(x)
as a real vector space.
(a) Show that 1

1−x ∈ R(x) is linearly independent of the set
{

xk}∞

k=0 ⊂ R(x).
RMK It’s true that ∑

∞
k=0 xk = 1

1−x holds on the interval (−1,1), but don’t forget that the summation
symbol on the left does not stand for repeated addition. Rather, it stands for a kind of limit.

(b) Show that the subset
{ 1

x−a

}
a∈R ⊂ R(x) is linearly independent.

RMK The vector space R[x] has countable dimension, but by part (b) the dimension of R(x) as a
real vector space is at least the cardinality of the continuum. In fact there is equality, because the
cardinality of all of R(x) is that of the continuum.

Linear Functionals

Fix a vector space V . A linear functional on V is a map ϕ : V → R such that for all a,b ∈ R and
u,v ∈ V , ϕ(av+ bu) = aϕ(v) + bϕ(u). Let V ∗ def

= {ϕ : V → R | ϕ is a linear functional} be the set of
linear functionals on V (V ∗ is the vector space dual to V , in short the dual space).

3. (The basic examples)

(a) Show that ϕ

 x
y
z

= 5x− y−4z defines a linear functional on R3.
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(b) Let ϕ be a linear functional on R2. Show that ϕ

((
x
y

))
= x ·ϕ

((
1
0

))
+ y ·ϕ

((
0
1

))
,

and conclude that every linear functional on R2 is of the form ϕ

((
x
y

))
= ax+ by for some

a,b ∈ R.
SUPP Construct an identification of (Rn)∗ with Rn, generalizing part (b).
(c) Fix a set X and a point x ∈ X . Define ex : RX →R by ex( f ) = f (x) (this is called the “evaluation

map”). Show that ex is a linear functional.

4. Show that V ∗ is a subspace of RV , hence a vector space.

A Linear Transformation
In this problem our notation follows conventions from physics. Thus v will be a numerical parameter

rather than a vector, and we write the coordinates of a vector in R2 as
(

x
t

)
rather than

(
x1
x2

)
.

5. In the course of his researches on electromagnetism, Henri Poincaré wrote down the following map
Lv : R2→ R2 which he called the “Lorentz transformation”:

Lv

(
x
t

)
def
= γv ·

(
x− vt
t− vx

)
.

Here v is a real parameter such that |v|< 1 and γv is also a number, defined by γv =
(
1− v2)−1/2.

(a) Suppose v = 0.6 so that γv = (1− 0.62)−1/2 = 1.25. Calculate Lv

(
3
2

)
, Lv

(
−1
1

)
and

Lv

(
2
3

)
. Check that Lv

(
2
3

)
= Lv

(
3
2

)
+Lv

(
−1
1

)
.

(b) Show that Lv is a linear transformation.
(c) (“Relativistic addition of velocities”) Let v,v′ ∈ (−1,1) be two parameters. Show that Lv ◦Lv′ =

Lu for u = v+v′
1+vv′ . It is a fact that if v,v′ ∈ (−1,1) then v+v′

1+vv′ ∈ (−1,1) as well.
Hint: Start by showing γvγv′ =

γu
1+vv′ .

RMK If g : A→ B and f : B→ C are functions then f ◦ g denotes their composition, the function
f ◦g : A→C such that ( f ◦g)(a) = f (g(a))for all a ∈ A.

Extra credit
C1. Let V be a vector space and let W1,W2 ⊂V be finite-dimensional subspaces.

(a) Show that dim(W1 +W2)≤ dimW1 +dimW2.
(**b) Show that dim(W1 +W2)+dim(W1∩W2) = dimW1 +dimW2.
Hint Let A,B be finite sets. Then the “inclusion-exclusion” formula states #A+ #B = #(A∪B)+

#(A∩B)

C2. For a vector space V and a set X endow V X with the structure of a vector space (check the axioms!).
When U,V are vector space show that the set of linear maps HomR(U,V )= { f : U →V | f is linear}⊂
VU is a subspace.

C3. (a) Let V be a vector space of dimension r over the finite field Fp. Show that #V = pr.
(b) Combine problems C2,C3 from PS1 and part (a) to show that every finite field has pr elements

for some prime p and positive integer r.
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Supplementary problems
A. Let V be a vector space and let ϕ ∈V ∗ be non-zero.

(a) Show that Kerϕ
def
= {v ∈V | ϕ(v) = 0} is a subspace.

(*b) Show that there is v ∈V satisfying ϕ(v) = 1.
(**c) Let B be a basis of Kerϕ , and let v ∈V be as in part (b). Show that B∪{v} is a basis of V .
RMK If V is finite-dimensional this shows: dimV = dimKerϕ +1. In general we say that Kerϕ is

of codimension 1.

B. Let V be a vector space, W a subspace. Let B⊂W be a basis for W and let C ⊂V be disjoint from B
and such that B∪C is a basis for V (that is, we extend B until we get a basis for V ).
(a) Show that {v+W}v∈C is a basis for the quotient vector space V/W (V/W is defined in the

supplement to PS2).
(b) Show that dimW +dim(V/W ) = dimV .

The following problem requires some background in set theory.
C. Let V be a vector space, and let B,C be a bases of V .

(a) Suppose one of B,C is finite, Show that the other is finite and that they have the same size.
– We may therefore assume both B,C are infinite.
(b) For a finite subset A⊂ B show that C∩Span(A) is finite.
– Let FB,FC be the sets of finite subsets of B,C respectively, and let f : FB→FC be the function

f (A) =C∩Span(A).
(c) Show that the image of f covers C (in symbols,

⋃
f (FB) =C).

(d) Show that the cardinality of the image of f is at least that of C.
(e) Show that |B| ≥ |C|. Conclude that |B| = |C|, in other words that infinite-dimensional vector

spaces also have well-defined dimensions.


