PI1.

P2.

P3.

Lior Silberman’s Math 412: Problem Set 6 (due 22/10/2019)

(Minimal polynomials)

11 00
12 1 -1 0 0
LetA:<3 4)’32 2 -2 2 1
1 =10

(a) Find the minimal polynomial of A and show that the minimal polynomial of B is x* (x — 1)2.
(b) Find a 3 x 3 matrix whose minimal polynomial is x.

For each of A, B find its eigenvalues and the correpsonding generalized eigenspaces.
Triangular matrices

Let L be a lower-triangular square matrix with non-zero diagonal entries. Find a formula for
its inverse.

Let U be an upper-triangular square matrix with non-zero diagonal entries.
(a) Give a “backward-substitution” algorithm for solving Ux = b efficiently.

1 45 X 7
(b) Explicitely use your algorithm to solve 2 6 vyl =18
3/ \z 9

(c) For a general upper-triangular U give a formula for U !, proving in particular that U is
invertible and that U~! is again upper-triangular.

RMK We’ll see that if A C M, (F) is a subspace containing the identity matrix and closed
under matrix multiplication, then the inverse of any matrix in .4 belongs to A. This applies,
in particular, to the set of upper-triangular matrices.

The minimal polynomial

Let D € M, (F) = diag(ay,...,a,) be diagonal.
(a) For any polynomial p € F[x] show that p(D) = diag (p(ay),...,p(ay)).

(b) Show that the minimal polynomial of D is mp(x) = [T}_, (x — a;;) where {a;; }

=1 s an

-

j=1
enumeration of the distinct values among the a;.

(c) Show that (over any field) the matrix B from problem P1 is not similar to a diagonal matrix.

(d) Now suppose that U is an upper-triangular matrix with diagonal D. Show that for any

p € Flx|, p(U) has diagonal p(D). In particular, mp|my.
Let T € End(V) be diagonable. Show that every generalized eigenspace is simply an eigenspace.

Let S€End(U), T € End(V). Let S&T € End(U ¢ V) be the “block-diagonal map”.

(a) For f € F[x] show that f (S®T) = f(S)® f(T).

(b) Show that mger = lem(mg,mr) (“least common multiple”: the polynomial of smallest
degree which is a multiple of both).

(c) Conclude that Specy(S&®T) = Specy(S) USpecy(T).

RMK See also problem B below.
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5. Let K/F be an extension of fields, let V be a finite-dimensional F-vectorpsace and let T €
Endp (V). Show that the minimal and charcteristic polynomials of Tx € Endg (Vi) are identical
with those of 7.

Extra credit

6. LetR € End(U @ V) be “block-upper-triangular”, in that R(U) C U.
(a) Define a “quotient linear map” R € End(U @V /U).
(b) Let S be the restriction of R to U. Show that both mg, mj divide mpg.
(c) Let f =lcm[mg,mp] and set T = f(R). Show that T (U) = {0} and that T(V) C U.
(d) Show that T? = 0 and conclude that f | mg | f2.
(e) Show that Spec(R) = Specy(S) USpecg(R).

Supplementary problems

A. (Cholesky decomposition)
(a) LetA be a positive-definite square matrix. Show that A = LL" for a unique lower-triangular
matrix L with positive entries on the diagonal.

£ j=Ii+E&
DEF For € € 1 define D® € M,(R) by Df; = ¢ —¢  j=i and let A= —D~ D™ be the
0 j#ijit+e

(positive) discrete Laplace operator.

(b) To f € C*(0,1) associate the vector f € R" where f(i) = f(£). Show that %Dﬂ_f and
%D_ J are both close to f " (so that both are discrete differentiation operators). Show that
nizD_DJr is an approximation to the second derivative.

(c) Find a lower-triangular matrix L such that LLT =A.

B. LetT € End(V). For monic irreducible p € F[x] define V,, = {v € V | 3k : p(T)*v = 0}.
(a) Show that V), is a T-invariant subspace of V and that mryy, = p* for some k > 0, with

k > 1iff V, # {0}. Conclude that p¥|mr.
(b) Show that if {p;};_, C F[x] are distinct monic irreducibles then the sum €, V), is direct.
(c) Let {pi};_, C F[x] be the prime factors of mr(x). Show that V = @i_, V,.

(d) Suppose that mz(x) =[], pf" (x) is the prime factorization of the minimal polynomial.
Show that V,,, = Ker pf"(T).
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Lior Silberman’s Math 412: Solutions to Problem Set 6

P1. (Minimal polynomials)

P2.

(a) A=

; i) does not satisfy any linear polynomial (if aA + bId = 0 then A = —21d

) 1 2 1 2 /7 10 5 10 2
would be scalar. However, A“ = (3 ) (3 ) = (1 ) = (1 )_|_ ( ) -

5A +2I so A?> —5A +2I = 0 and this is the minimal polynomial.

1 1 0 0 1 1 0 0\/1 1 0 0 0 0
et 21 0 0 > =1 =1 0 o[-t =1 0 o]l |0 o
B=|_5 5 o 1|MsB=(_5 5 2 1|2 22 2 1|7|=3 =3
1 1 —-10 1 1 —10/\1 1 -10 )
o 1 0o o\/0 1 0 0 1 =20 0
> -1 2 0 o[-t 20 o [2 3 00
and (B=1"=1_, 5 | 1 ||=2 -2 1 1| |1 1 00"
11 -1 =1\ o1 -1 0 0 00

is then easy to check that B*(B — 1)? = 0. Thus the minimal polynomial must be a divisor

of x?(x— 1)?, and by the unique factorization theorem for polynomials any such divisor di-
0O 0 0 O 0 1
0O 0 0 O -1 -2

-3 -3 3 2 -2 =2
2 2 =21 1 1

vides one of x*(x— 1) and x(x— 1)?. However, B>(B—1) =

0 00O
_01 S 2 2 # 0 and similarly B(B—1)* # 0.
* ko ok ok
010
(b) LetN= [0 0 0 |. Then N> =0 so the minimal polynomial is a divisor of x>. The only
0 0O

proper divisor is x, and isn’t the mininal polynomial since N # 0.

The eigenvalues are the roots of the minimal polynomial. For A these are %m For B these
are 0, 1. The generalized eigenspaces for A are simply the eigenspaces spanned by the eigen-
vectors. The rest of the discussion focuses on B.

Let Uy = KerB?, U; = Ker (B — 1)2. Adding % the last row to the third (assume 2 is invert-

1 00 O 0 0 0 O 00 O 0
) 010 O 0 0 0 O 00 O 0
ible) we see that 00 1 3/2 3 3 3 2|7 |oo o 52| It follows
000 1 2 2 =21 2 2 =2 1
00 0O
P . > 00 0O
that Uy = {(x, y,Xx+y,0) } (in characteristic 2, B = 1110 and we get the same con-
00 01

clusion). Similarly, U; = {(0,0,z,w)"}. Let Vy,V; be the generalized eigenspaces. Then
certainly Uy C Vy and Uy C V). Also, Uy, U, are each 2-dimensional and their intersection is
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empty. It follows that the sum Uy + U is direct and 4-dimensional, that is 4= Up@U,. This
means that Vy = Up and V| = Uj: lety € V), for example. Then v = uy +u, for u) € U,. Apply
BF for k > 2 such that By = 0. Then also Bkgo =0 and so Bkgl = 0. This contradicts B being
invertible on V; unless u; = 0 so that v = u, € Up. Similarly, if v € V; then applying (B —1 )k
to v shows that v € Uj.

2. (a) We have DY =1d = diag(1,...,1) = diag (a?,...,al). Suppose that for some k > 0 we
have D' = diag (dh... ,a’,‘l). Then D! = DD* = diag (a;) diag (a¥) = diag (ak“). Finally,

let p(x) = Y&, ogxk. Then

K K K K
p(D) = Z oy D* = Z oy diag (ai-‘) = Z diag (Ocka{-‘) = diag (Z Ockai-‘> = diag (p(a;)) -
k=0 k=0 k=0 k=0

(b) Let pp(x) be the given polynomial. Then for each a; we have pp(a;) = 0 and hence
pp(D) = diag (0) = 0, so the minimal polynomial divides pp.On the other hand, each g;
is an eigenvalue of D, hence a zero of mp. It follows that mp = pp.

(c) Its minimal polynomial has multiple roots.

(d) Let U,U’ be upper-triangular. We then have (aU +U’),; = aU;; + U}, and, since U;; = 0 if
j<iandUj;=0if j > i we have

(wu"), =Y u,u, =Y UUj;=UU;.
J i<j<i
Now the same induction argument as in (a) shows that (p(U));; = p (Uj;). In particular, if
p(U) =0 then p(D) = 0 and so mp|my.
3. LetU,; CV be the eigenspaces of T, V) the generalized eigenspaces.

(1) Fix an eigenbasis B C V. Now suppose that (T —l)ky = 0 for some v € V. We have

v=Y"a;y; for some a; € F and v; € B. Suppose Tv; = A;v;. Then

0=(T-2)v=Y a(k—1) .
i=1

Since B is a basis it follows that a; (A; — l)k =0 for each i, and if A; # A this means a; = 0.
It follows that

y= aiv; €Uy .
Ai=A
(2) We have U, C V, and at the same time V = D cspec,(r) Ur (by assumption) and V =
Daespec, (1) Va (theorem from class). If V' is finite-dimensional then we have

dimpV =Y dimp Uy <Y dimg V) = dimV
A A
and we must therefore have equality throughout, that is dimg Uy = dimg V) and U; =V),.

(3) Foreach A letyy : V) — €, V) be the standard map. Let W C €, V), be the internal direct
sum of the images of the U, . Composing with the quotient map @, V), — D, V, / W gives

a map
Vi @i/ Pus.
A A

81



Note that if v € U), then 1, (v) is in W, and so f3 (v) = 0. It follows that f; induces a map

]E,IZ VA/UA %@VA/@UA.
A A

Finally, this family of maps induces a map

F- @ Wa/Uy) —PVa/PU,.
Y i Py

This is an isomorphism: if v € @, v, thenv =Y, v; forsome v; € V), and then f (¥; (v;+ Uy,)) =

v+ W, and if f(¥,;(v;+U,)) =0 (4 distinct) then ¥;v; € W so each v; € Uj,. Now
we are given that @, V) / @, U, is the zero space (both spaces are isomorphic to V) so
@, (V3 /U,) is zero, and hence for each A V /U, = {0} and V; = U,.

4. LetS€End(U), T €End(V).Let S&T € End(U & V) be the “block-diagonal map”.

5.

(a) LetS;,S2 € End(U), T1,T, € End(V) and let & € F. Then
[a(S10T)+ (20 0)](udy) = a($10T)udy)+(207) (udy)
= a(S1udTy)+ (S2u® Thy)
= (aS1+8)ud(al + 1)y
= [(aS1+ %)@ (ali +12)] (u®v)

and

(S18T)(S28D)|@ey) = (51T (SusT)
= (S15u) @ (11 Toy)
= $152@NT) (uoy).

Now from the second claim it follows by induction on k that (S @ T )" = $¥ & T*, and then
it follows by induction on n that

Zock (SoT) Zock<Sk@T"> (Zaka>@<,i()akSk>'

(b) Let f =lcm (mg,my). Then f(S) =0and f(7T) =0 (f is a multiple of the respective mini-
mal polynomials), and hence f (S®T) = f(S) D f(T) =00, so f is divisible by the min-
imal polynomial of S @ 7. Conversely, we have msar (SO T) = msar(S) ®mser(T) =0
s0 mggr(S) = 0 and mgq(T) = 0. It follows that mgqr is divisible by both mg and mr,
hence by their least common multiple.

(c) Clearly if mg(A) =0 or mr(A) =0 then f(A) = 0 (it’s a multiple). For the converse, let
A be a root of f, but not of mg or my. Then x — A divides f by not mg or mr, so both mg

and mr divide flx 7)L contradicting the minimality of f.

Let R € End(U & V) be “block-upper-triangular”, in that R(U) C U.

(a) In general, if T € End(W) and Z C W is T-stable then setting T'(w+ Z) = Tw + Z gives a
linear map.

(b) For any polynomial f and any u € U we have f(R)u = f(S)u, by the same induction as
the in the problems above. In particular, if f(R) = 0 then f(S) = 0 and mg|f. Similarly,
forwec UV, f(R)(w+U) = f(R)w+U so that f(R) = f(R). In particular, if f(R) =0
then f(R) = 0 and mp|f.

82



©)

(d
(e

Let f =lcm([mg,mp] and set T = f(R). Since mg|f we have f(S) = 0. Then for u € U we
have Tu = f(S)u =0, so T(U) = 0. For the same reason, f(R) = 0, that is 7 = 0 which
means 7 (V) C U.

Let T(V) C U and T(U) = 0 we have T? = 0, so f>(R) = 0 and hence mg|f>. We have
already seen that f|mg.

Since f|mg|f?, any root of f is a root of mg and any root of mp is a root of f2. But f, f2
have the same roots.

Supplementary problems

A. (c)Let
2
L. = 1 .
i ’T j=i—1
0 JFLi—1
Then

- .
0— lT 1_41 k=i—1
2 2
it1 i—1 _
)y
T - '
22 (— ,-ﬁ>+0 k=i+1
|0 li—k| >2
(2 k=1
= -1 |[k—i|=1
0 Jk—i>2
= (—A)ik.

B. LetT € End(V). For monic irreducible p € F[x] define V, = {v € V | 3k : p(T)*v = 0}.

(a)

(b)

For a polynomial g(x) we have xg(x) = g(x)x. Then Tq(T) = q(T)T. In particular, if
v € Kerg(T) then ¢(T)Tv = Tq(T)v = 0 and hence Tv € Kerg(T) as well. We assume
that V is finite-dimensional, so each V), is. In particular let {yi}?zl C V, be a basis, and
let k be large enough such that p(T)*v; = 0 for each i. Then Spany {v;}}_, C Kerp(T)*.
But Kerp(T)* C V, by definition, so V,, = Kerp(T)*. It follows that mryv, | pk. Since
p is irreducible, each divisor of p* has the form pk/ for some k' < k. If V, = {0} then
mry, = 1. Otherwise, Idy, is not the zero map so mry, # 1 and kK > 1. In any case,
mr (T [V,) =mr(T) | V, =0 shows that P = mryy, [mr.

Let p,q € F|x| be relatively prime (for example p irreducible and not dividing ¢). We will
show that g(T) is invertible on V,,. We have V,, = Uy, Ker(p*(T)), so it is enough to show
that ¢(T') is invertible on each Ker ( pk(T)). Since ¢ is prime to p, it is prime to p* for each
k. Since F[x] is a PID, there are a(x), B(x) € F[x] such that ag+ Bp* = 1. Then on U =
Ker(p"(T)) we have 1 = a(T [ U)g(T [ U)+B(T [U)p"(T 1U) = (T [ U)g(T | U),
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(©)

(d)

so ¢ (T) is indeed invertible on Ker(p*(T)).

Now, let B C F|[x] be a set of monic irreducibles, and let W = Y ,c5V),. We need to show
the sum is direct. For this, let }/" ; v; = 0 be a minimal dependence where y; € V), for
some distinct p; € B. Let k,, be such that p* (T)v, = 0. We then have

Since pk» is prime to p; for i < m, pk»(T) is invertible on V,, so pn(T)y; # 0. This
contradicts the minimality of the original combination.

LetW = @,_, V), and suppose that Z =V /W is non-zero. Since W is T-invariant we have
a quotient map 7 on Z. Since V /W is non-zero, we have 1 # my|myr. In particular, m; has
some irreducible factor, without loss of generality p;. Thus let v € V have non-zero image

in Z,,. Then [T}, pfi (T) is invertible in Z,,, so [T}, pfi (T)v has non-zero image there. It
follows that u = Hlfzzp?(T)y ¢ W. But plfl (T)u =mr(T)u =0 shows thatu € V,, CW,
a contradiction.

Since mryy, |mr and has p; as its unique irreducible divisor, we have my V), | pf". This

pf" (T ['Vp,) =0and V), C Ker pf" (T). The reverse containment holds by definition. We
remark that k; is the minimal value for which this is true: if pfi_] (T') vanished in V), then

pf" e i pl;j (T') would vanish in @’_; V,,; =V, contradicting the minimality of mr.
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Lior Silberman’s Math 412: Problem set 7 (due 2/11/2017)

Practice
P1. Find the characteristic and minimal polynomial of each matrix:
500000 500000
1100 040000 021000
0100 002000 002000
001 O0Op’OO0O021O0]1P’]0002T1F£0
0 001 0 00O02°1 0 00O02°1
0 00O0O02 000O0O02
01 010
P2. Showthat |0 O 1], [0 O 1| aresimilar. Generalize to higher dimensions.
00O 0 00

The Jordan Canonical Form

1. For each of the following matrices, (i) find the characteristic polynomial and eigenvalues (over
the complex numbers), (i1) find the eigenspaces and generalized eigenspaces, (iii) find a Jordan
basis and the Jordan form.

1 0 00 0 O
1 2 1 0 01 -1 0 0 0 00 —1 1
21 0 1 00 0 —1 1 -1 11 =11

A=1lo o1 21'=l10 0 11'“lo 0 01 0 0
0 0 —2 1 01 0 0 0 1 00 2 0

0 0 00 0 1

RMK I suggest computing by hand first even if you later check your answers with a CAS.

2. Suppose the characteristic polynomial of T is x(x — 1)3(x — 3)*.
(a) What are the possible minimal polynomials?
(b) What are the possible Jordan forms?

3. LetT,S€Endg(V).
(a) Suppose that 7, S are similar. Show that my (x) = mg(x).
(b) Prove or disprove: if mr(x) = mg(x) and pr(x) = ps(x) then T, S are similar.

4. Let F be algebraically closed of characteristic zero. Show that every g € GL,(F) has a square
root, in that g = h? for some h € GL,(F).

5. Let V be finite-dimensional, and let A C Endr(V) be an F-subalgebra, that is a subspace
containing the identity map and closed under multiplication (composition). Suppose that T &
A is invertible in Endr (V). Show that 7-! € A.

(extra credit problem on reverse)
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Extra credit
6. (The additive Jordan decomposition) Let V be a finite-dimensional vector space, and let 7' €

EndF (V)

DEF An additive Jordan decomposition of T is an expression T = S+ N where S € Endg (V)
is diagonable, N € Endp (V) is nilpotent, and S, N commute.

(a) Suppose that F is algebraically closed. Separating the Jordan form into its diagonal and
off-diagonal parts, show that 7" has an additive Jordan decomposition.

(b) Let S,S’ € Endr(V) be diagonable and suppose that S, S’ commute. Show that S+ 5 is
diagonable.

(c) Show that a nilpotent diagonable linear transformation vanishes.

(d) Suppose that T has two additive Jordan decompositions T =S+ N = §' + N’. Show that
S=8and N=N'

Supplementary problems: /” spaces

A. ForyeC"and 1 < p <oolet ||y, be as defined in class.

(a) For 1 < p < oo define 1 <q<ooby%—|—é: 1 (also if p =1 set g = oo and if p = oo set
g=1). Given x € C let y(x) = ﬁ x|P/4 (set y = 0 if x = 0), and given a vector x € C"
define a vector yanalogously.

(i) Show that [|y[| = [lx]|5/%.
(ii) Show that for this particular choice of vy, [Yi xiyi| = [|x[[, | XHq

(b) Now let u,v € C" and let 1 < p < eo. Show that [LiL uvi| < [lul|, ||v[l, (this is called
Holder’s inequality).

(c) Conlude that ||ul|, = max { Iz wil | [lvll, = 1}.

(d) Show that ||u]| » is a seminorm (hint: A(c)) and then that it is a norm.

(e) Show that lim), e[|y, = [[v|. (this is why the supremum norm is usually called the L*
norm).

B. Let X be aset. For 1 < p <ooset /(X)={f:X—=C|Yex|f(x)]” <eo}, and also set

>(X)={f: X - C| f bounded}.

(a) Show thatfor f € /7(X) and g € £4(X) (q asin A(a)) we have fg € ¢! (X) and |¥,cx f(x)g(x)| <
1711, 11l

(b) Show that £7(X) are subspaces of CX, and that £, = (Xrex |f(x)|p)1/P is a norm on
r(X)

(c) Let{fn},_; C ¢P(X) be a Cauchy sequence. Show that for each x € X, {f,,(x)},_; C Cis
a Cauchy sequence.

(d) Let {f,},_; C ¢P(X) be a Cauchy sequence and let f(x) = lim,_,e f,,(x). Show that f €
P(X).

(e) Let {fn},_; C ¢P(X) be a Cauchy sequence. Show that it is convergent in (7 (X).

Hint for B(d): Suppose that || f||, = . Then there is a finite set S C X with (¥,cs |f(x)|p)1/p >
iMoo | ful| + 1.
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Lior Silberman’s Math 412: Solutions to Problem set 7

Practice
1 10O 010 0
lo1o0o0 _lo oo 0 -
Pl. For A = 00 10 JA—T = 00 0 0lexp(ir)+ Lexp(—i) so (A—1I)" =0 and

0 001 0 00O 0

the minimal polynomial is (x — 1)?. The characteristic polynomial must then be (x — 1)*.
500000
040000

For B= 8 8 g (2) (1) 8 we have Vs = Span{e, }, Vs = Span{e, }, Vo = Span{es, ..., e}
000021
00 0O0O02

(B—5,B—4,(B—2)? vanish on the respective spaces, and they sum to F°). The minimal
polynomial is therefore (x —5) (x —4) (x —2)*. The characteristic polynomials on the re-
spective spaces are (x— 5), (x—4) , (x —2)* so on their direct sum is (x — 5) (x —4) (x —2)*.

500 00
021000
For C = 8 8 (2) g (1) 8 we have Vs = Span{e,}, Vo = Span{e,,...,ec} (C—5,(C—
000O021
000O0O0?2
2)3 vanish on the respective spaces, and they sum to £%). The minimal polynomial is then
(x—35) (x—2)* and the characteristic polynomial (x —5) (x —2)°.
010
P2. LetN= |0 O 1 |.ThenNe, =0,Ne,=e;and N (e5+ ate,) =e,+aes. Clearly {e;,e,,e5+ ae,}
000
01 o
is another basis for F3, so N is similartoA= [ 0 0 1 |. More generally, let A be a strictly
0 00

upper-triangular matrix with non-zero entries right above the main diagonal. Then A is simi-
lar to the Jordan block N of the same size (ones above the main diagonal, zeroes elsewhere).
For this let v, = e, and for 0 < k <n— 1 set v, , = A¥v,. We show by induction on k that
V,—k € Span {gi}?:_lk and that the coefficient of ¢ is the product Hlj’:] Apn—jn—j+1. Fork=0
the claim is evident. Suppose the claim for k. Since A is strictly upper-triangular, we have
Ae,, € Span{e;}",'. Thus if

n—k—1

k
Vpk = (Han—m—m) Gkt ), g
j=1 '
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1.

det(xId—A) = det

then

n—k—1

k
YVok—1 = I_Ianfj,nfﬁ1 Ae,_+ Z 0;Ae;
j=1 i=1

Z a; p—ke; + Span {gj}?;llciz

n—k—1
i=1

k
e | [Tanjn—j+i
j=

k
n—k—2
= H An—jn—j+1 | On—k—1n—k€p—k—1 T Span {gj}jzl
j=1

k+1 nk—?
= H An—jn—j+1 | €n k-1 +Span {g,- } =1
j=1

which is the claim for k + 1. Since the a; ;11 are non-zero it follows that v; = ([T~ aii11) e,
is non-zero while Ay; = 0, so {v;}"_, is a Jordan block for A and A is similar to N.

(a)
1 -2 -1 0 x—1 =2 —1
2 x—1 0 —1 et 2 x—1 —1
0 0 x—1 —2 |=°¢ x—1 =2
0 0 2 x—1 2 x—1

— (det (x;l x__21>)2 = (= 1)*+4)° = (2 —2x+5)°

where A = 1 +2i. We find some eigenvectors:

2 2 10
o 20 1
A-Ald=1 o o 5 2

so its eigenvectors must take the form (x,y,z,iz) where —2ix+2y+z =0, so (x,ix —z/2,z,iz)

that is
1 0
V) D Spang (l) , _11/ 2
0 i
Taking complex conjugates we find
1 0
—i —1/2
V3 D Spang o | 1/
0 —i



1 0 1 0
Since the whole space is 4-dimensional, we have the eigenbasis (l) , _11/ 2 , Bl , _11/ 2
0 i 0 —i
so that
A=5SDs™!
1 0 1
where § = 6_11/2 Bl 1/2 and D = diag (1 +2i,1+2i,1 —2i,1 —2i).
0 i 0 —i
S S N o I L N O Y
(b) det(Id —Bx) = det =X x —1|—|x 0 —1|=x? +
-1 0 x -1 X
0 —1 X -1 0 «x

0 -1 X

X SN H_ +x2+ (2 +1) = (P + l) . The eigenvalues are therefore =i.
-1 x -1 x
We have
—i
B—ild= (1)
0
Row reduction gives:
0O 1 0 i 01 0 01 0 O
) 0 —i 0 -1 00 0 00 0 -2
Bmild~dy o & 1 [~ 10 - 10 —i 0
0 0 0 O 0 2 0 00 0 O
i -2 =2 2i -2
0 0 N2 0O -2 0 2
so V; D Spang 1 and similarly V_; D Spang | .Now (B—i)" = 5 9 o o
0 0 0 -2i 0 =2
0 0 i i 0
so (B—i)* o - 0 also. Since (B —1i) i [0 so V; D Span 0 ;
0 = ' 0 1 ! 11’10
1 1 0 0 1
([—i 0
Similarly V_; D Span (1) , Bl and since the whole space is 4-dimensional we
L\ 0 1
i 0 —1i 0
conclude that Span (1) , (l) ,Span (1) ) Bl as the two Jordan block.
0 1 0 1
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