Math 101 - SOLUTIONS TO WORKSHEET 33 TAYLOR SERIES AND DERIVATIVES

1. Manipulating power series: summing series

(1) Find $\sum_{n=1}^{\infty} \frac{1}{n2^n}$. **Solution:** We know that $\log(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n$, with radius of convergence 1. We then have:

$$\sum_{n=1}^{\infty} \frac{1}{n2^n} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \left(\frac{-1}{2}\right)^n = -\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \left(-\frac{1}{2}\right)^n$$
$$= -\log\left(1 - \frac{1}{2}\right) = -\log\frac{1}{2} = \log 2.$$

(2) Avatars of geometric series. (a) Evaluate $\sum_{n=1}^{\infty} \frac{n}{2^n}$. Solution: Let $h(x) = \sum_{n=1}^{\infty} nx^n$. We see that

$$h(x) = x \sum_{n=1}^{\infty} nx^{n-1} = x \frac{\mathrm{d}}{\mathrm{d}x} \sum_{n=1}^{\infty} x^n$$
$$= x \frac{\mathrm{d}}{\mathrm{d}x} \sum_{n=0}^{\infty} x^n = x \frac{\mathrm{d}}{\mathrm{d}x} \frac{1}{1-x}$$
$$= \frac{x}{(1-x)^2}.$$

Now the radius of convergence of $\sum_{n=0}^{\infty} x^n$ is 1, so $\frac{1}{2}$ is in the domain of convergence and we conclude

$$\sum_{n=1}^{\infty} \frac{n}{2^n} = \frac{\frac{1}{2}}{\left(1 - \frac{1}{2}\right)^2} = \frac{4}{2} = 2.$$

(b) Express $\sum_{n=1}^{\infty} n^2 x^n$ as a *rational function* (ratio of polynomials). Solution: Let $f(x) = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$. We see that

$$f'(x) = \sum_{n=0}^{\infty} nx^{n-1}$$
$$xf'(x) = \sum_{n=0}^{\infty} nx^{n}$$
$$(xf'(x))' = \sum_{n=0}^{\infty} n^{2}x^{n-1}$$
$$x(xf'(x)) = \sum_{n=0}^{\infty} n^{2}x^{n},$$

Date: 29/3/2017, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

so that

$$\sum_{n=1}^{\infty} n^2 x^n = \sum_{n=0}^{\infty} n^2 x^n = x \left(x \left(\frac{1}{1-x} \right)' \right)' = x \left(\frac{x}{(1-x)^2} \right)'$$
$$= x \left(\frac{1}{(1-x)^2} + \frac{2x}{(1-x)^3} \right) = \frac{x \left((1-x) + 2x \right)}{(1-x)^3} = \boxed{\frac{x(1+x)}{(1-x)^3}}.$$

(3) Find a simple formula for $\sum_{n=0}^{\infty} \frac{e^{nx}}{n!}$. **Solution:** We know that $e^u = \sum_{n=0}^{\infty} \frac{u^n}{n!}$ so setting $u = e^x$ we get $\sum_{n=0}^{\infty} \frac{1}{n!} e^{nx} = \sum_{n=0}^{\infty} \frac{1}{n!} (e^x)^n = \frac{1}{n!} e^{nx}$ e^{e^x} .

2. Taylor Series

The Taylor series of f(x) centered at c is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n \,.$$

(4) Find the MacLaurin (c = 0) series of $f(x) = e^x$. **Solution:** For each n we have $f^{(n)}(x) = e^x$ so $f^{(n)}(0) = e^0 = 1$. The series is therefore

$$\sum_{n=0}^{\infty} \frac{1}{n!} (x-0)^n = \sum_{n=0}^{\infty} \frac{x^n}{n!} \,.$$

(5) (Final 2014) Find the Taylor series $g(x) = \log x$ centered at a = 2, as well as its radius of convergence. **Solution:** $g'(x) = \frac{1}{x}, g''(x) = -\frac{1}{x^2}, g^{(3)}(x) = \frac{1 \cdot 2}{x^3}, g^{(4)}(x) = -\frac{1 \cdot 2 \cdot 3}{x^4}$, and in general $g^{(n)}(x) = (-1)^{n-1} \frac{(n-1)!}{x^n}$. So for $n \ge 1$ we have $g^{(n)}(2) = (-1)^{n-1} \frac{(n-1)!}{2^k}$ and the Taylor series is

$$\log 2 + \sum_{n=1}^{\infty} (-1)^{n-1} \frac{(n-1)!}{2^n n!} (x-2)^n = \log 2 + \sum_{n=1}^{\infty} (-1)^n \frac{(n-1)!}{2^n n (n-1)!} (x-2)^n$$
$$= \log 2 + \sum_{n=1}^{\infty} (-1)^n \frac{(x-2)^n}{2^n n}.$$

For the radius of convergence we compute $\lim_{n\to\infty} \left| \frac{(-1)^{n+1}}{2^{n+1}(n+1)} / \frac{(-1)^n}{2^n n} \right| = \lim_{n\to\infty} \frac{n}{n+1} \cdot \frac{2^n}{2^{n+1}} = \frac{1}{2} \lim_{n\to\infty} \frac{1}{1+\frac{1}{n}} = \frac{1}{2} \lim_{n\to\infty} \frac{1}{2^{n+1}(n+1)} / \frac{(-1)^n}{2^n n} = \frac{1}{2^n} \lim_{n\to\infty} \frac{1}{2^{n+1}(n+1)} + \frac{1}{2^n} = \frac{1}{2^n} \lim_{n\to\infty} \frac{1}{2^n} \lim_{n\to\infty} \frac{1}{2^n} = \frac{1$ $\frac{1}{2}$ so we have R = 2.

Solution: We have

$$\log x = \log(2 + (x - 2)) = \log\left(2\left(1 + \frac{x - 2}{2}\right)\right) = \log 2 + \log\left(1 + \frac{x - 2}{2}\right).$$

We know that $\log(1+u) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} u^n$ and it follows that

$$\log x = \log 2 + \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \left(\frac{x-2}{2}\right)^n.$$

The logarithm series converges for $-1 < u \leq 1$ so our series will converge for $-1 < \frac{x-2}{2} \leq 1$ that is $-2 < x - 2 \le 2$ so the radius of convergence is 2.

- (6) (Final 2014) Let $\sum_{n=0}^{\infty} A_n x^n$ be the MacLaurin series for e^{3x} . Find A_5 . **Solution:** Knowing that $e^u = \sum_{n=0}^{\infty} \frac{u^n}{n!}$ we have $e^{3x} = \sum_{n=0}^{\infty} \frac{3^n}{n!} x^n$ so $A_5 = \frac{3^5}{5!}$. (7) (Final 2013) Let $f(x) = x^2 \sin(x^3)$. Find $f_{3}^{11}(0)$.
- **Solution:** We know that $\sin u = u \frac{u^3}{3!} + \frac{u^5}{5!} \cdots$ so

$$x^{2}\sin(x^{3}) = x^{2}\left(x^{3} - \frac{x^{9}}{3!} + \cdots\right) = x^{5} - \frac{x^{11}}{3!} + \cdots$$

It follows that $\frac{f^{(11)}(0)}{11!} = \frac{1}{3!}$ so $f^{(11)}(0) = \frac{11!}{3!}$.