Math 101 - SOLUTIONS TO WORKSHEET 33 TAYLOR SERIES AND DERIVATIVES

1. Manipulating power series: summing series

(1) Find $\sum_{n=1}^{\infty} \frac{1}{n 2^{n}}$.

Solution: We know that $\log (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^{n}$, with radius of convergence 1 . We then have:

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{n 2^{n}} & =\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}\left(\frac{-1}{2}\right)^{n}=-\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}\left(-\frac{1}{2}\right)^{n} \\
& ==-\log \left(1-\frac{1}{2}\right)=-\log \frac{1}{2}=\log 2
\end{aligned}
$$

(2) Avatars of geometric series.
(a) Evaluate $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$.

Solution: Let $h(x)=\sum_{n=1}^{\infty} n x^{n}$. We see that

$$
\begin{aligned}
h(x) & =x \sum_{n=1}^{\infty} n x^{n-1}=x \frac{\mathrm{~d}}{\mathrm{~d} x} \sum_{n=1}^{\infty} x^{n} \\
& =x \frac{\mathrm{~d}}{\mathrm{~d} x} \sum_{n=0}^{\infty} x^{n}=x \frac{\mathrm{~d}}{\mathrm{~d} x} \frac{1}{1-x} \\
& =\frac{x}{(1-x)^{2}} .
\end{aligned}
$$

Now the radius of convergence of $\sum_{n=0}^{\infty} x^{n}$ is 1 , so $\frac{1}{2}$ is in the domain of convergence and we conclude

$$
\sum_{n=1}^{\infty} \frac{n}{2^{n}}=\frac{\frac{1}{2}}{\left(1-\frac{1}{2}\right)^{2}}=\frac{4}{2}=2 .
$$

(b) Express $\sum_{n=1}^{\infty} n^{2} x^{n}$ as a rational function (ratio of polynomials).

Solution: Let $f(x)=\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}$. We see that

$$
\begin{aligned}
f^{\prime}(x) & =\sum_{n=0}^{\infty} n x^{n-1} \\
x f^{\prime}(x) & =\sum_{n=0}^{\infty} n x^{n} \\
\left(x f^{\prime}(x)\right)^{\prime} & =\sum_{n=0}^{\infty} n^{2} x^{n-1} \\
x\left(x f^{\prime}(x)\right) & =\sum_{n=0}^{\infty} n^{2} x^{n},
\end{aligned}
$$

so that

$$
\begin{aligned}
\sum_{n=1}^{\infty} n^{2} x^{n} & =\sum_{n=0}^{\infty} n^{2} x^{n}=x\left(x\left(\frac{1}{1-x}\right)^{\prime}\right)^{\prime}=x\left(\frac{x}{(1-x)^{2}}\right)^{\prime} \\
& =x\left(\frac{1}{(1-x)^{2}}+\frac{2 x}{(1-x)^{3}}\right)=\frac{x((1-x)+2 x)}{(1-x)^{3}}=\frac{x(1+x)}{(1-x)^{3}}
\end{aligned}
$$

(3) Find a simple formula for $\sum_{n=0}^{\infty} \frac{e^{n x}}{n!}$.

Solution: We know that $e^{u}=\sum_{n=0}^{\infty} \frac{u^{n}}{n!}$ so setting $u=e^{x}$ we get $\sum_{n=0}^{\infty} \frac{1}{n!} e^{n x}=\sum_{n=0}^{\infty} \frac{1}{n!}\left(e^{x}\right)^{n}=$ $e^{e^{x}}$.

2. Taylor SERIES

The Taylor series of $f(x)$ centered at c is

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!}(x-c)^{n}
$$

(4) Find the MacLaurin $(c=0)$ series of $f(x)=e^{x}$.

Solution: For each n we have $f^{(n)}(x)=e^{x}$ so $f^{(n)}(0)=e^{0}=1$. The series is therefore

$$
\sum_{n=0}^{\infty} \frac{1}{n!}(x-0)^{n}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

(5) (Final 2014) Find the Taylor series $g(x)=\log x$ centered at $a=2$, as well as its radius of convergence.

Solution: $\quad g^{\prime}(x)=\frac{1}{x}, g^{\prime \prime}(x)=-\frac{1}{x^{2}}, g^{(3)}(x)=\frac{1 \cdot 2}{x^{3}}, g^{(4)}(x)=-\frac{1 \cdot 2 \cdot 3}{x^{4}}$, and in general $g^{(n)}(x)=$ $(-1)^{n-1} \frac{(n-1)!}{x^{n}}$. So for $n \geq 1$ we have $g^{(n)}(2)=(-1)^{n-1} \frac{(n-1)!}{2^{k}}$ and the Taylor series is

$$
\begin{aligned}
\log 2+\sum_{n=1}^{\infty}(-1)^{n-1} \frac{(n-1)!}{2^{n} n!}(x-2)^{n} & =\log 2+\sum_{n=1}^{\infty}(-1)^{n} \frac{(n-1)!}{2^{n} n(n-1)!}(x-2)^{n} \\
& =\log 2+\sum_{n=1}^{\infty}(-1)^{n} \frac{(x-2)^{n}}{2^{n} n}
\end{aligned}
$$

For the radius of convergence we compute $\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1}}{2^{n+1}(n+1)} / \frac{(-1)^{n}}{2^{n} n}\right|=\lim _{n \rightarrow \infty} \frac{n}{n+1} \cdot \frac{2^{n}}{2^{n+1}}=\frac{1}{2} \lim _{n \rightarrow \infty} \frac{1}{1+\frac{1}{n}}=$ $\frac{1}{2}$ so we have $R=2$.

Solution: We have

$$
\log x=\log (2+(x-2))=\log \left(2\left(1+\frac{x-2}{2}\right)\right)=\log 2+\log \left(1+\frac{x-2}{2}\right)
$$

We know that $\log (1+u)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} u^{n}$ and it follows that

$$
\log x=\log 2+\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}\left(\frac{x-2}{2}\right)^{n}
$$

The logarithm series converges for $-1<u \leq 1$ so our series will converge for $-1<\frac{x-2}{2} \leq 1$ that is $-2<x-2 \leq 2$ so the radius of convergence is 2 .
(6) (Final 2014) Let $\sum_{n=0}^{\infty} A_{n} x^{n}$ be the MacLaurin series for $e^{3 x}$. Find A_{5}.

Solution: Knowing that $e^{u}=\sum_{n=0}^{\infty} \frac{u^{n}}{n!}$ we have $e^{3 x}=\sum_{n=0}^{\infty} \frac{3^{n}}{n!} x^{n}$ so $A_{5}=\frac{3^{5}}{5!}$.
(7) (Final 2013) Let $f(x)=x^{2} \sin \left(x^{3}\right)$. Find $f^{11}(0)$.

Solution: We know that $\sin u=u-\frac{u^{3}}{3!}+\frac{u^{5}}{5!}-\cdots$ so

$$
x^{2} \sin \left(x^{3}\right)=x^{2}\left(x^{3}-\frac{x^{9}}{3!}+\cdots\right)=x^{5}-\frac{x^{11}}{3!}+\cdots
$$

It follows that $\frac{f^{(11)}(0)}{11!}=\frac{1}{3!}$ so $f^{(11)}(0)=\frac{11!}{3!}$.

