Lior Silberman's Math 539: Problem Set 1 (due 1/2/2014)

The main challenges are problem 3, 4, 8(c) and 9.

NOTATION $f = \Theta(g)$ means f = O(g) and g = O(f), that is $0 \le \frac{1}{C}f(x) \le g(x) \le Cf(x)$ for all large enough x.

- 1. (The standard divisor bound)
 - (a) Let f(n) be multiplicative, and suppose that $f \to 0$ along prime powers that is, for every $\varepsilon > 0$ there is N such that if $p^m > N$ then $|f(p^m)| \le \varepsilon$. Show that $\lim_{n \to \infty} f(n) = 0$.
 - (b) Show that for all $\varepsilon > 0$, $d(n) = O(n^{\varepsilon})$.
- 2. Establish some of the following identities in the ring of formal Dirichlet series
 - (a) Let $d_k(n) = \sum_{\prod_{i=1}^k a_i = n} 1$ be the generalized divisor functions, counting factorizations of *n* into k parts (so $d_2(n) = d(n)$ is the usual divisor function). Show $\sum_n d_k(n) n^{-s} = (\zeta(s))^k$ and that $d_k * d_l = d_{k+l}$.
 - (b) Define $d_{1/2}(n)$. Calculate $d_{1/2}(p)$, $d_{1/2}(12)$.
 - (c) Generalize to a multiplicative function $d_z(n)$ such that $d_z * d_w = d_{z+w}$ and evaluate $d_z(p)$, $d_{z}(p^{k}), d_{z}(360).$
 - (d) Let $\sigma_{\alpha}(n) = \sum_{d|n} d^{\alpha}$ be the generalized sum-of-divisors function. Show that $\sum_{n=1}^{\infty} \sigma_{\alpha}(n) n^{-s} =$ $\zeta(s)\zeta(s-\alpha).$
 - (e) Show that $\sum_{n\geq 1} d(n^2) n^{-s} = \frac{\zeta(s)^3}{\zeta(2s)}$
- 3. (Averaging)
 - (a) Show the function $\frac{\phi(n)}{n} = \prod_{p|n} \left(1 \frac{1}{p}\right)$ has the average value $\frac{1}{\zeta(2)}$.
 - (b) Show that for each $k \ge 1$ $\frac{1}{x} \sum_{n \le x} d_k(n) = P_k(\log x) + O(x^{-\frac{1}{k}})$ where P_k is a polynomial of degree k-1.
 - (c) Consider $\frac{1}{x}\sum_{n\leq x}\sigma_{\alpha}(n)$. (simplest) Show that $\frac{1}{x}\sum_{n\leq x}\sigma_{\alpha}(n) = \Theta(x^{\alpha})$ (better) Find C = $C(\alpha)$ such that $\frac{1}{x}\sum_{n\leq x}\sigma_{\alpha}(n) = Cx^{\alpha} + o(x^{\alpha})$ (best) Show $\frac{1}{x}\sum_{n\leq x}\sigma_{\alpha}(n) = Cx^{\alpha} + O(x^{\beta})$ for some $\beta < \alpha$.
- 4. Let $D_{\phi}(s) = \sum_{n>1} \phi(n) n^{-s}$.
 - (a) Represent the series in terms of $\zeta(s)$ formally.
 - (b) Show the series converges absolutely for $\Re(s) > 2$.
 - (c) Show that the series failes to converge at s = 2.
- 5. Recall the function $\operatorname{Li}(x) = \int_2^x \frac{\mathrm{d}t}{\log t}$.
 - (a) ("Asymptotic expansion") Show that for fixed *K*, $\operatorname{Li}(x) = \sum_{k=1}^{K} (k-1)! \frac{x}{\log^k x} + O_K\left(\frac{x}{\log^{K+1} x}\right)$. (b) (Asymptotic expansions are not series expansions) Show that $\sum_{k=1}^{\infty} (k-1)! \frac{x}{\log^k x}$ diverges.

 - (c) Use summation by parts to estimate $\pi(x) = \sum_{p \le x} 1$ using the known asymptotics for $\sum_{p \le x} \frac{1}{p}$. Can you show $\pi(x) \ll \operatorname{Li}(x)$? $\pi(x) \gg \operatorname{Li}(x)$? That $\frac{\pi(x)}{\operatorname{Li}(x)} = 1 + o(1)$?
 - (d) Deduce $\pi(x) = \Theta(\text{Li}(x))$ from Chebychev's estimate $\theta(x) = \Theta(x)$.

- 6. (Chebychev's lower bound) Let $\theta(x) = \sum_{p \le x} \log p$. We will find an explicit c > 0 such that $\theta(x) \ge cx$ for $x \ge 2$.
 - (a) Let $v_p(n)$ denote the number of times *p* divides *n*. Show that $v_p(n!) = \sum_{k=1}^{\infty} \left| \frac{n}{p^k} \right|$.
 - (b) Show that if $n then <math>v_p\left(\binom{2n}{n}\right) = 1$.
 - (c) (main saving) Show that if $\frac{2}{3}n then <math>v_p\left(\binom{2n}{n}\right) = 0$ unless n = p = 2.
 - (d) Show that if $\sqrt{2n} then <math>v_p\left(\binom{2n}{n}\right) \le 1$.
 - (e) Show that $v_p\left(\binom{2n}{n}\right) \leq \log_p 2n$.

 - (f) Show that $\log\binom{2n}{n} (\theta(2n) \theta(n)) \le \theta\left(\frac{2n}{3}\right) + 2\sqrt{2n}\log(2n)$. (g) Find a constant c > 0 such that $\theta(x) \ge cx$ for $2 \le x \le 4$ and such that if $\theta(x) \ge cx$ for all $2 \le x \le X$ then $\theta(x) \ge cx$ for $X < x \le 2X$.
- 7. Notation: f(x) = o(g(x)) ("little oh") if $\lim_{x\to\infty} \frac{|f(x)|}{g(x)} = 0$. (a) Show $\prod_p \left(1 - \frac{1}{p}\right) e^{\frac{1}{p}}$ converges.
 - (b) Show that $\prod_{p \le z} \left(1 \frac{1}{p}\right) = \frac{C(1+o(1))}{\log z}$.
- 8. Let $\sigma > 0$
 - (a) Show that $\prod_{p \le x} (1 + p^{-\sigma}) \le \exp(O(x^{1-\sigma}/\log x)).$
 - (b) Let $a_p \in \mathbb{C}$ satisfy $|a_p| \le p^{-\sigma}$. Show that $f(n) = \prod_{p|n} (1+a_p) \le \exp\left(O\left((\log^{1-\sigma} n)(\log\log n)^{-1}\right)\right)$.

(c) Show that $\sum_{n \le x} f(n) = cx + O(x^{1-\sigma})$ where $c = \prod_p \left(1 + \frac{a_p}{p}\right)$.

- 9. Let A_n denote a set of representative for the isomorphism classes of abelian groups of order *n*, $A_n = #\mathcal{A}_n$ the number of isomorphism classes.

 - (a) Show that $\sum_{n\geq 1} A_n n^{-s} = \prod_{k=1}^{\infty} \zeta(ks)$ in the ring of formal Dirichlet series. (b) Show that $\sum_{n\leq x} A_n = cx + O\left(x^{1/2}\right)$ where $c = \prod_{k=2}^{\infty} \zeta(k)$.

Hint for 5(a): Repeatedly integrate by parts, and for the error estimate effectuate the mantra "log is a constant function" by breaking the interval of integration in two.