Math 322: Problem Set 8 (due 6/11/2014)

- P1. Let *G* be a commutative group and let $k \in \mathbb{Z}$.
 - (a) Show that the map $x \mapsto x^{\overline{k}}$ is a group homomorphism $G \to G$.
 - (b) Show that the subsets $G[k] = \{g \in G \mid g^k = e\}$ and $\{g^k \mid g \in G\}$ are subgroups.
 - RMK For a general group G we let $G^k = \langle \{g^k \mid g \in G\} \rangle$ be the subgroup generated by the *k*th powers. You have shown that, for a commutative group, $G^k = \{g^k \mid g \in G\}$.

Cyclic groups and their automorphisms

- 1. (Structure of cyclic groups)
 - (a) Let G be a group, $g \in G$ an element of order n, and let $a \in \mathbb{Z}$ Show that g^a has order $\frac{n}{\gcd(n,a)}$.
 - (b) Show that C_n has $\phi(n)$ generators, where $\phi(n) = \#(\mathbb{Z}/n\mathbb{Z})^{\times}$ is the Euler totient function.
 - (c) Let $A = \mathbb{Z}/n\mathbb{Z}$. Show that if d|n then $A[d] = \{a \in A \mid d \cdot a = [0]\}$ (see problem P1) is the subgroup generated by the residue class of $\frac{n}{d}$.
 - (d) Show that C_n has a unique subgroup of order d for each d|n.
- 2. We show "If *G* has order *n*, and for every *d*|*n* there is at most one subgroup of order *d* then *G* is cyclic". For this let *G* be a minimal counterexample.
 - (a) Show that every proper subgroup of *G* is cyclic.
 - (b) Show that, for each *d*|*n*, *G* has at most *φ*(*d*) elements of order exactly *d* (hint: let *g* ∈ *G* have order *d*; what can you say about ⟨*g*⟩?)
 - (c) Use the formula $\sum_{d|n} \phi(d) = n$ show that G is cyclic.

PRAC Let *F* be a field, and let $H \subset F^{\times}$ be a finite group.

- (a) Show that for each positive integer *d*, *H* has at most *d* elements of order dividing *d* (hint: express the statement "*x* has order dividing *d*" by a polynomial equation, and use the fact that a polynomial of order *d* over a field has at most *d* roots).
- (b) Show that *H* is cyclic.

Automorphisms of groups and semidirect products

3. Let H, N be groups, and let $\varphi \in \text{Hom}(H, \text{Aut}(N))$ be an action of H on N by automorphisms. DEF The (external) *semidirect product* of H and N *along* φ is the operation

$$(h_1, n_1) \cdot (h_2, n_2) = (h_1 h_2, (\varphi(h_2^{-1}) n_1) n_2)$$

on the set $H \times N$. We denote this group $H \ltimes_{\varphi} N$.

- PRAC Verify that when φ is the trivial homomorphism ($\varphi(h) = id$ for all $h \in H$), this is the ordinary direct product.
- (a) Show that the semidirect product is, indeed, a group.
- (b) Show that $f_H: H \to H \ltimes_{\varphi} N$ given by f(h) = (h, e), $f_N: N \to H \ltimes_{\varphi} N$ given by f(n) = (e, n) and $\pi: H \ltimes_{\varphi} N \to H$ given by $\pi(h, n) = h$ are group homomorphisms.
- (c) Show that $\tilde{H} = f_H(H)$ and $\tilde{N} = f_N(N)$ are subgroups with \tilde{N} normal. Show that for $\tilde{h} = (h, e)$ and $\tilde{n} = (e, n)$ we have $\tilde{h}\tilde{n}\tilde{h}^{-1} = (\tilde{\varphi(h)})(n)$.
- (d) Show that $H \ltimes_{\varphi} N$ is the internal semidirect product of its subroups \tilde{H}, \tilde{N} .

Supplementary problems

- A. Let D_{2n} be the dihedral group, acting on the graph with vertices $\{1, 2, \dots, n\}$ and edges $\{\{1, 2\}, \{2, 3\}, \dots, \{n, 1\}\}$.
 - PRAC Let $c = (123 \cdots n) \in D_{2n}$ be the "rotation" and let r(i) = n + 1 i be the "reflection". Show that $r, c \in D_{2n}$.
 - (a) Show that $C = \langle c \rangle \simeq C_n$ and that $R = \langle r \rangle \simeq C_2$. Show that *R* normalizes *C*.
 - (b) Show that $D_{2n} = R \ltimes C$, and in particular that every element of D_{2n} is either of the form c^j or rc^j .
 - (c) Give the multiplication rule in those coordinates. In particular, show that all the elements of the form rc^{j} are of order 2.
 - (d) Find all the conjugacy classes in D_{2n} .

Solving the following problem involves many parts of the course.

- B. Let *G* be a group of order 8.
 - (a) Suppose *G* is commutative. Show that *G* is isomorphic to one of C_8 , $C_4 \times C_2$, $C_2 \times C_2 \times C_2$.
 - (b) Suppose G is non-commutative. Show that there is $a \in G$ of order 4 and let $H = \langle a \rangle$.
 - (c) Show that $a \notin Z(G)$ but $a^2 \in Z(G)$.
 - (d) Suppose there is $b \in G H$ of order 2. Show that $G \simeq D_8$ (hint: $bab^{-1} \in \{a, a^3\}$ but can't be a).
 - (e) Let $b \in G H$ have order 4. Show that $bab^{-1} = a^3$ and that $a^2 = b^2 = (ab)^2$.
 - (f) Setting c = ab, $-1 = a^2$ and -g = (-1)g show that $G = \{\pm 1, \pm a, \pm b, \pm c\}$ with the multiplication rule ab = c, ba = -c, bc = a, cb = -a, ca = b, ac = -b.
 - (g) Show that the set in (f) with the indicated operation is indeed a group.

DEF The group of (f),(g) is called the *quaternions* and indicated by Q.

Supplement: *p*-Sylow subgroups

- C. Let *G* be a group (especially infinite).
 - DEF Let X be a set. A *chain* $C \subset P(X)$ is a set of subsets of X such that if $A, B \in C$ then either $A \subset B$ or $B \subset A$.
 - (a) Show that if C is a chain then for every finite subset $\{A_i\}_{i=1}^n \subset C$ there is $B \in C$ such that $A_i \subset B$ for all *i*.
 - (b) Suppose C is a non-empty chain of subgroups of a group G. Show that the union $\bigcup C$ is a subgroup of G containing all $A \in cC$.
 - (c) Suppose C is a chain of p-subgroups of G. Show that $\bigcup C$ is a p-group as well.
 - (*d) Use Zorn's Lemma to show that every group has maximal *p*-subgroups (*p*-subgroups which are not properly contained in other *p*-subgroups), in fact that every *p*-subgroup is contained in a maximal one.
 - RMK When G is infinite, it does not follow that these maximal subgroups are all conjugate.