Math 322: Problem Set 8 (due 6/11/2014)

P 1 . Let G be a commutative group and let $k \in \mathbb{Z}$.
(a) Show that the map $x \mapsto x^{k}$ is a group homomorphism $G \rightarrow G$.
(b) Show that the subsets $G[k]=\left\{g \in G \mid g^{k}=e\right\}$ and $\left\{g^{k} \mid g \in G\right\}$ are subgroups.

RMK For a general group G we let $G^{k}=\left\langle\left\{g^{k} \mid g \in G\right\}\right\rangle$ be the subgroup generated by the k th powers. You have shown that, for a commutative group, $G^{k}=\left\{g^{k} \mid g \in G\right\}$.

Cyclic groups and their automorphisms

1. (Structure of cyclic groups)
(a) Let G be a group, $g \in G$ an element of order n, and let $a \in \mathbb{Z}$ Show that g^{a} has order $\frac{n}{\operatorname{gcd}(n, a)}$.
(b) Show that C_{n} has $\phi(n)$ generators, where $\phi(n)=\#(\mathbb{Z} / n \mathbb{Z})^{\times}$is the Euler totient function.
(c) Let $A=\mathbb{Z} / n \mathbb{Z}$. Show that if $d \mid n$ then $A[d]=\{a \in A \mid d \cdot a=[0]\}$ (see problem P1) is the subgroup generated by the residue class of $\frac{n}{d}$.
(d) Show that C_{n} has a unique subgroup of order d for each $d \mid n$.
2. We show "If G has order n, and for every $d \mid n$ there is at most one subgroup of order d then G is cyclic". For this let G be a minimal counterexample.
(a) Show that every proper subgroup of G is cyclic.
(b) Show that, for each $d \mid n, G$ has at most $\phi(d)$ elements of order exactly d (hint: let $g \in G$ have order d; what can you say about $\langle g\rangle$?)
(c) Use the formula $\sum_{d \mid n} \phi(d)=n$ show that G is cyclic.

PRAC Let F be a field, and let $H \subset F^{\times}$be a finite group.
(a) Show that for each positive integer d, H has at most d elements of order dividing d (hint: express the statement " x has order dividing d " by a polynomial equation, and use the fact that a polynomial of order d over a field has at most d roots).
(b) Show that H is cyclic.

Automorphisms of groups and semidirect products

3. Let H, N be groups, and let $\varphi \in \operatorname{Hom}(H, \operatorname{Aut}(N))$ be an action of H on N by automorphisms. DEF The (external) semidirect product of H and N along φ is the operation

$$
\left(h_{1}, n_{1}\right) \cdot\left(h_{2}, n_{2}\right)=\left(h_{1} h_{2},\left(\varphi\left(h_{2}^{-1}\right) n_{1}\right) n_{2}\right)
$$

on the set $H \times N$. We denote this group $H \ltimes_{\varphi} N$.
PRAC Verify that when φ is the trivial homomorphism $(\varphi(h)=\mathrm{id}$ for all $h \in H)$, this is the ordinary direct product.
(a) Show that the semidirect product is, indeed, a group.
(b) Show that $f_{H}: H \rightarrow H \ltimes_{\varphi} N$ given by $f(h)=(h, e), f_{N}: N \rightarrow H \ltimes_{\varphi} N$ given by $f(n)=$ (e, n) and $\pi: H \ltimes_{\varphi} N \rightarrow H$ given by $\pi(h, n)=h$ are group homomorphisms.
(c) Show that $\tilde{H}=f_{H}(H)$ and $\tilde{N}=f_{N}(N)$ are subgroups with \tilde{N} normal. Show that for $\tilde{h}=$ (h, e) and $\tilde{n}=(e, n)$ we have $\tilde{h} \tilde{n} \tilde{h}^{-1}=(\varphi(h))(n)$.
(d) Show that $H \ltimes_{\varphi} N$ is the internal semidirect product of its subroups \tilde{H}, \tilde{N}.

Supplementary problems

A. Let $D_{2 n}$ be the dihedral group, acting on the graph with vertices $\{1,2, \cdots, n\}$ and edges $\{\{1,2\},\{2,3\}, \ldots,\{n, 1\}\}$.
PRAC Let $c=(123 \cdots n) \in D_{2 n}$ be the "rotation" and let $r(i)=n+1-i$ be the "reflection". Show that $r, c \in D_{2 n}$.
(a) Show that $C=\langle c\rangle \simeq C_{n}$ and that $R=\langle r\rangle \simeq C_{2}$. Show that R normalizes C.
(b) Show that $D_{2 n}=R \ltimes C$, and in particular that every element of $D_{2 n}$ is either of the form c^{j} or $r c^{j}$.
(c) Give the multiplication rule in those coordinates. In particular, show that all the elements of the form $r c^{j}$ are of order 2.
(d) Find all the conjugacy classes in $D_{2 n}$.

Solving the following problem involves many parts of the course.
B. Let G be a group of order 8 .
(a) Suppose G is commutative. Show that G is isomorphic to one of $C_{8}, C_{4} \times C_{2}, C_{2} \times C_{2} \times C_{2}$.
(b) Suppose G is non-commutative. Show that there is $a \in G$ of order 4 and let $H=\langle a\rangle$.
(c) Show that $a \notin Z(G)$ but $a^{2} \in Z(G)$.
(d) Suppose there is $b \in G-H$ of order 2 . Show that $G \simeq D_{8}$ (hint: $b a b^{-1} \in\left\{a, a^{3}\right\}$ but can't be a).
(e) Let $b \in G-H$ have order 4. Show that $b a b^{-1}=a^{3}$ and that $a^{2}=b^{2}=(a b)^{2}$.
(f) Setting $c=a b,-1=a^{2}$ and $-g=(-1) g$ show that $G=\{ \pm 1, \pm a, \pm b, \pm c\}$ with the multiplication rule $a b=c, b a=-c, b c=a, c b=-a, c a=b, a c=-b$.
(g) Show that the set in (f) with the indicated operation is indeed a group.

DEF The group of $(\mathrm{f}),(\mathrm{g})$ is called the quaternions and indicated by Q.

Supplement: p-Sylow subgroups

C. Let G be a group (especially infinite).

DEF Let X be a set. A chain $\mathcal{C} \subset P(X)$ is a set of subsets of X such that if $A, B \in \mathcal{C}$ then either $A \subset B$ or $B \subset A$.
(a) Show that if \mathcal{C} is a chain then for every finite subset $\left\{A_{i}\right\}_{i=1}^{n} \subset \mathcal{C}$ there is $B \in \mathcal{C}$ such that $A_{i} \subset B$ for all i.
(b) Suppose \mathcal{C} is a non-empty chain of subgroups of a group G. Show that the union $\cup \mathcal{C}$ is a subgroup of G containing all $A \in c C$.
(c) Suppose \mathcal{C} is a chain of p-subgroups of G. Show that $\cup \mathcal{C}$ is a p-group as well.
(*d) Use Zorn's Lemma to show that every group has maximal p-subgroups (p-subgroups which are not properly contained in other p-subgroups), in fact that every p-subgroup is contained in a maximal one.
RMK When G is infinite, it does not follow that these maximal subgroups are all conjugate.

