MATH 100: MORE EXAMPLES OF TAYLOR EXPANSIONS

1. FINDING THE EXPANSIONS

(1) f(z) = 2>+ 3x+1, to third order. f'(x) = 32%2+3, f"(z) = 6x, f"(x) = 6,
all further derivatives are zero.
(a) Expand about z = 1: f(1) =5, f'(1) =6, f’(1) = 6,f"(1) = 6. Get
(actual equality since f is a polynomial)
6 6
flz) = 5+6(3c—1)+§(x—1)2+§(x—1)3
= 546(z—1)+3@x—-1"+@—-1)>".
(b) Expand about z = 5: f(5) = 141, f'(1) =78, (1) = 30,f"'(1) = 6.
Get (actual equality since f is a polynomial)
30 6
fla) = 141+78(mf1)+§(x71)2+§(x71)3
= MI+78z—-1)+15—1>+(@x—-1)".
(2) Let’s try sin(11z + z?) to third order. We know sin(u) ~ u — g—? to third
order. Now 11z 4 x2 vanishes at zero so we can plug in and get:
(11z + 22)3
3!

1, .
= lla+a?— 5 (1132° + 3(11z)%2® + 3(11z)(2%)* + (2?)?)

13631%3
to third order (the z#, 2° 2% terms are negligible when working to third
order).
(3) Let’s try sin (11z + 5) to third order. (aside: 112 =121, 113 = 1331).
(a) (Allzl)(out is,: — 2 this reads si!n (11 (z - (;%))) we plug in: 11(z—a)—
SEEs = U (w4 ) S (04 )
(b) About = = 0, using derivatives. The first three are 11cos(1lz +
5), =112 sin(112+5), —113 cos(11x+5) at 0 we get sin(5), 11 cos(5), —121 sin(5), —1331 cos(5)
so to third order about z = 0,

sin(11z +2%) ~ (1lz +2?) -

~ llz+2°—

121 si
sin(5) 22 1331 cos(5) 23
2 6
(¢) About 2 = 0, using addition formula and substitution. Recall sin (112 + 5) =
2

sin(5) cos (112) + cos(5) sin (11z). To third order, cos(u) = 1 — %,

sin(u) = u — “; S0

sin (11z + 5) ~ sin(5) + 11 cos(b) - = —

sin (112 +5) ~ sin(5) {1 - (11;)2} + cos(5) [(Hx) -

(112)3
3!

. 121sin(5) 5 1331cos(5) 4
= sin(5) + 11cos(5) - = — 5 x — 5 x
1
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after rearranging.
2
e . N .
(4) E(v) = Wyt the expression for the energy of a relativistic particle of

mass m and velocity v. Let’s expand to second order, to see what happens
at velocities much smaller than the speed of light c.

—3/2
(a) By the chainrule, E'(v) = mc?® (—1) <1 - %j) (-2) =mo (1 - ;’—2
so E'(0) = 0. Next, by the quotient rule

3/2 1/2
L(-s) (o) ()

E'(v) = m
(1-%)
1 v?/c?
= m —3m .
-5 -5

We get E”(0) = m. The second-order expansion is therefore
1
E(v) ~ mc* + §mv2 ,
recovering the classical kinetic energy at low velocities.
2 —
(b) Different approach: let u = %. Get E(u) = mc? (1 —u) /2 Again
E(0) = mc?, also

dE

1 _
E = mC2§(1—U) 3/2
d?E 13 _
T = Mz -w”
d3FE 135 _
W = Ml -wT

and so on. Get:

1 1 1- 1-3-
E(u):m62[1+u+-32 35 3 }

1
24T 99" T319.9.2"

so plugging in u = Z—;, get

A N C I LA N
2¢2 8\ ¢c2 16 \ 2

2\ 2 2\ 3
mc2+lmv2+m02 § v +i v NI
2 8 \ ¢2 16 \ ¢2

Remark: It is very useful to keep the rest of the series in terms of
Z—; instead of in terms of v2. We get the series of
relativistic corrections to the classical Newtonian formula %mvz.
(5) Example: suppose we know f/(z) = f(x) and f(0) = 1. What is the Taylor
expansion?
Solution: If f'(z) = f(z) then f”(z) = f'(z) = f(z) and f*+(z) =
4 f®)(z) = L f(x) = f(z) by induction. So f*)(0) =1 for all k. So

X

E(v) = mdc

the small parameter

2 (£3 SB4

x
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x

Remark: this looks silly: we know that f'(x) = e®*. But the same
approach applies to f/(x) = f(x) + f?(x). Then f/(0) = 2, and

f'(@) = fl@)+2f (@) f' () = fla)+f2(@)+2f (2) (2(f(2) + f2(2)) = f(2)+3f%(2)+2%(2)

so f(0) = 6 and we get to second order f(z) ~ 1+ 2z + 322 with no
formula for f.



