Math 539: Problem Set 1 (due 29/1/2014)

- 1. (The standard divisor bound)
 - (a) Let f(n) be multiplicative, and suppose that $f \to 0$ along prime powers that is, for every $\varepsilon > 0$ there is N such that if $p^m > N$ then $|f(p^m)| \le \varepsilon$. Show that $\lim_{n \to \infty} f(n) = 0$.
 - (b) Show that for all $\varepsilon > 0$, $d(n) = O(n^{\varepsilon})$.
- 2. Establish the following identities in the ring of formal Dirichlet series
 - (a) Let $d_k(n) = \sum_{\prod_{i=1}^k a_i = n} 1$ be the generalized divisor functions, counting factorizations of *n* into k parts (so $d_2(n) = d(n)$ is the usual divisor function). Show $\sum_n d_k(n)n^{-s} = (\zeta(s))^k$ and that $d_k * d_l = d_{k+l}$.
 - (b) Define $d_{1/2}(n)$. Calculate $d_{1/2}(p)$, $d_{1/2}(12)$.
 - (c) Let $\sigma_{\alpha}(n) = \sum_{d|n} d^{\alpha}$ be the generalized sum-of-divisors function. Show that $\sum_{n=1}^{\infty} \sigma_{\alpha}(n) n^{-s} =$ $\zeta(s)\zeta(s-\alpha).$
 - (d) Show that $\sum_{n\geq 1} d(n^2) n^{-s} = \frac{\zeta(s)^3}{\zeta(2s)}$.
- 3. Let $D_{\phi}(s) = \sum_{n>1} \phi(n) n^{-s}$.
 - (a) Represent the series in terms of $\zeta(s)$ formally.
 - (b) Show the series converges absolutely for $\Re(s) > 2$.
 - (c) Show that the series failes to converge at s = 2.
- 4. Recall the function $\operatorname{Li}(x) = \int_2^x \frac{\mathrm{d}t}{\log t}$.
 - (a) ("Asymptotic expansion") Show that for fixed K, $\operatorname{Li}(x) = \sum_{k=1}^{K} (k-1)! \frac{x}{\log^k x} + O_K\left(\frac{x}{\log^{K+1} x}\right).$
 - (b) (Asymptotic expansions are not series expansions) Show that $\sum_{k=1}^{\infty} (k-1)! \frac{x}{\log^k x}$ diverges.
 - (c) Use summation by parts to estimate $\pi(x) = \sum_{p \le x} 1$ using the known asymptotics for $\sum_{p \le x} \frac{1}{p}$. Can you show $\pi(x) \ll \operatorname{Li}(x)$? $\pi(x) \gg \operatorname{Li}(x)$? That $\frac{\pi(x)}{\operatorname{Li}(x)} = 1 + o(1)$?
 - NOTATION $f = \Theta(g)$ means f = O(g) and g = O(f), that is $0 \le \frac{1}{C}f(x) \le g(x) \le Cf(x)$ for all large enough x.
 - (d) Deduce $\pi(x) = \Theta(\text{Li}(x))$ from Chebychev's estimate $\psi(x) = \Theta(x)$.
- 5. (Chebychev's lower bound) Let $\theta(x) = \sum_{p \le x} \log p$. We will find an explicit c > 0 such that $\theta(x) > cx$ for x > 2.
 - (a) Let $v_p(n)$ denote the number of times p divides n. Show that $v_p(n!) = \sum_{k=1}^{\infty} \left| \frac{n}{n^k} \right|$.
 - (b) Show that if $n then <math>v_p\left(\binom{2n}{n}\right) = 1$.
 - (c) (main saving) Show that if $\frac{2}{3}n then <math>v_p\left(\binom{2n}{n}\right) = 0$ unless n = p = 2.
 - (d) Show that if $\sqrt{2n} then <math>v_p\left(\binom{2n}{n}\right) \le 1$.
 - (e) Show that $v_p\left(\binom{2n}{n}\right) \leq \log_p 2n$.

 - (f) Show that $\log \binom{2n}{n} (\theta(2n) \theta(n)) \le \theta \left(\frac{2n}{3}\right) + 2\sqrt{2n}\log(2n)$. (g) Find a constant c > 0 such that $\theta(x) \ge cx$ for $2 \le x \le 4$ and such that if $\theta(x) \ge cx$ for all $2 \le x \le X$ then $\theta(x) \ge cx$ for $X < x \le 2X$.

- 6. Notation: f(x) = o(g(x)) ("little oh") if $\lim_{x\to\infty} \frac{|f(x)|}{g(x)} = 0$.
 - (a) Show $\prod_p \left(1 \frac{1}{p}\right) e^{\frac{1}{p}}$ converges.
 - (b) Show that $\prod_{p \le z} \left(1 \frac{1}{p}\right) = \frac{C(1+o(1))}{\log z}$.
- 7. Let $\sigma > 0$
 - (a) Show that $\prod_{p \le x} (1 + p^{-\sigma}) \le \exp(O(x^{1-\sigma}/\log x))$.
 - (b) Let $a_p \in \mathbb{C}$ satisfy $|a_p| \le p^{-\sigma}$. Show that $f(n) = \prod_{p|n} (1+a_p) \le \exp\left(O\left((\log^{1-\sigma} n)(\log\log n)^{-1}\right)\right)$.
 - (c) Show that $\sum_{n \le x} f(n) = cx + O(x^{1-\sigma})$ where $c = \prod_p \left(1 + \frac{a_p}{p}\right)$.
- 8. Let A_n denote a set of representative for the isomorphism classes of abelian groups of order *n*, $A_n = #A_n$ the number of isomorphism classes.
 - (a) Show that $\sum_{n\geq 1} A_n n^{-s} = \prod_{k=1}^{\infty} \zeta(ks)$ in the ring of formal Dirichlet series.
 - (b) Show that $\sum_{n \le x} A_n = cx + O\left(x^{1/2}\right)$ where $c = \prod_{k=2}^{\infty} \zeta(k)$.
- 9. Let $A \subset \mathbb{N}$. We define its lower and upper *natural densities* by

$$\underline{d} = \liminf_{N \to \infty} \frac{1}{N} \sum_{n \le N} A(n) , \qquad \qquad \overline{d} = \limsup_{N \to \infty} \frac{1}{N} \sum_{n \le N} A(n) .$$

If the two are equal the limit exists and we call it the *natural density* of A. Similarly, the lower and upper *logarithmic densities* are

$$\underline{\delta} = \liminf_{N \to \infty} \frac{1}{\log N} \sum_{n \le N} \frac{A(n)}{n}, \qquad \qquad \bar{\delta} = \limsup_{N \to \infty} \frac{1}{\log N} \sum_{n \le N} \frac{A(n)}{n},$$

and a set has a logarithmic density if it lower and upper densities agree.

- (a) Show that $0 \le \underline{d} \le \overline{\delta} \le \overline{\delta} \le \overline{d} \le 1$ for all *A*. Conclude that if *A* has natural density it has logarithmic density and the two are equal.
- (b) Let *A* be the set of integers whose most significant digit is 4. Compute the lower and upper natural and logarithmic densities of *A*. Does it have natural density? Logarithmic density?

Hint for 4(a): Repeatedly integrate by parts, and for the error estimate effectuate the mantra "log is a constant function" by breaking the interval of integration in two.

Supplementary problems

- A. Give the ring of formal Dirichlet series the *ultrametric* topology. In other words, say that $D_n(s) \rightarrow D(s)$ if each coefficient eventually stabilizes. This allows us to define products of Dirichlet series.
 - (a) Let $G(T) = \sum_{n=0}^{\infty} a_n T^n \in \mathbb{C}[[T]]$ be a formal power series, and let f be an arithmetic function with f(1) = 0. Show that $G(D_f) = \sum_{n=0}^{\infty} a_n (D_f(s))^n$ is a convergent series in the ring of formal Dirichlet series.
 - (b) Let $D(s) = \sum_{n \ge 1} b_n n^{-s}$ be a formal Dirichlet series with $b_1 = 1$. Realize $\log D(s)$ as a formal Dirichlet series without constant term, and show that $\exp \log D(s) = D(s)$.
 - (c) If f is multiplicative then $\sum_{n\geq 1} f(n)n^{-s} = \prod_p (\sum_{m=0}^{\infty} f(p^m)p^{-s})$, in the sense that the product on the right converges in the ultrametric topology.
 - (d) (The complex topology is different) Give a multiplicative function f and a number s such that $\prod_{p} (1 + |\sum_{m=1}^{\infty} f(p^m) p^{-s}|)$ converges but $\sum_{n \ge 1} f(n) n^{-s}$ does not.
- B. For each $z \in \mathbb{C}$ define a multiplicative function $d_z(n)$ giving a natural generalization of d_k , and satisfying $d_z * d_w = d_{z+w}$. Evaluate $d_z(p)$, $d_z(p^k)$, $d_z(360)$.

[Note for the future: problem on sum-free sets]