Math 539: Problem Set 1 (due 29/1/2014)

1. (The standard divisor bound)
(a) Let $f(n)$ be multiplicative, and suppose that $f \rightarrow 0$ along prime powers - that is, for every $\varepsilon>0$ there is N such that if $p^{m}>N$ then $\left|f\left(p^{m}\right)\right| \leq \varepsilon$. Show that $\lim _{n \rightarrow \infty} f(n)=0$.
(b) Show that for all $\varepsilon>0, d(n)=O\left(n^{\varepsilon}\right)$.
2. Establish the following identities in the ring of formal Dirichlet series
(a) Let $d_{k}(n)=\sum_{\prod_{i=1}^{k} a_{i}=n} 1$ be the generalized divisor functions, counting factorizations of n into k parts (so $d_{2}(n)=d(n)$ is the usual divisor function). Show $\sum_{n} d_{k}(n) n^{-s}=(\zeta(s))^{k}$ and that $d_{k} * d_{l}=d_{k+l}$.
(b) Define $d_{1 / 2}(n)$. Calculate $d_{1 / 2}(p), d_{1 / 2}(12)$.
(c) Let $\sigma_{\alpha}(n)=\sum_{d \mid n} d^{\alpha}$ be the generalized sum-of-divisors function. Show that $\sum_{n=1}^{\infty} \sigma_{\alpha}(n) n^{-s}=$ $\zeta(s) \zeta(s-\alpha)$.
(d) Show that $\sum_{n \geq 1} d\left(n^{2}\right) n^{-s}=\frac{\zeta(s)^{3}}{\zeta(2 s)}$.
3. Let $D_{\varphi}(s)=\sum_{n \geq 1} \varphi(n) n^{-s}$.
(a) Represent the series in terms of $\zeta(s)$ formally.
(b) Show the series converges absolutely for $\Re(s)>2$.
(c) Show that the series failes to converge at $s=2$.
4. Recall the function $\operatorname{Li}(x)=\int_{2}^{x} \frac{\mathrm{~d} t}{\log t}$.
(a) ("Asymptotic expansion") Show that for fixed $K, \operatorname{Li}(x)=\sum_{k=1}^{K}(k-1)!\frac{x}{\log ^{k} x}+O_{K}\left(\frac{x}{\log ^{K+1} x}\right)$.
(b) (Asymptotic expansions are not series expansions) Show that $\sum_{k=1}^{\infty}(k-1)!\frac{x}{\log ^{k} x}$ diverges.
(c) Use summation by parts to estimate $\pi(x)=\sum_{p \leq x} 1$ using the known asymptotics for $\sum_{p \leq x} \frac{1}{p}$. Can you show $\pi(x) \ll \operatorname{Li}(x) ? \pi(x) \gg \operatorname{Li}(x)$? That $\frac{\pi(x)}{\operatorname{Li}(x)}=1+o(1)$?
NOTATION $f=\Theta(g)$ means $f=O(g)$ and $g=O(f)$, that is $0 \leq \frac{1}{C} f(x) \leq g(x) \leq C f(x)$ for all large enough x.
(d) Deduce $\pi(x)=\Theta(\operatorname{Li}(x))$ from Chebychev's estimate $\psi(x)=\Theta(x)$.
5. (Chebychev's lower bound) Let $\theta(x)=\sum_{p \leq x} \log p$. We will find an explicit $c>0$ such that $\theta(x) \geq c x$ for $x \geq 2$.
(a) Let $v_{p}(n)$ denote the number of times p divides n. Show that $v_{p}(n!)=\sum_{k=1}^{\infty}\left\lfloor\frac{n}{p^{k}}\right\rfloor$.
(b) Show that if $n<p \leq 2 n$ then $v_{p}\left(\binom{2 n}{n}\right)=1$.
(c) (main saving) Show that if $\frac{2}{3} n<p \leq n$ then $v_{p}\left(\binom{2 n}{n}\right)=0$ unless $n=p=2$.
(d) Show that if $\sqrt{2 n}<p \leq n$ then $v_{p}\left(\binom{2 n}{n}\right) \leq 1$.
(e) Show that $v_{p}\left(\binom{2 n}{n}\right) \leq \log _{p} 2 n$.
(f) Show that $\log \binom{2 n}{n}-(\theta(2 n)-\theta(n)) \leq \theta\left(\frac{2 n}{3}\right)+2 \sqrt{2 n} \log (2 n)$.
(g) Find a constant $c>0$ such that $\theta(x) \geq c x$ for $2 \leq x \leq 4$ and such that if $\theta(x) \geq c x$ for all $2 \leq x \leq X$ then $\theta(x) \geq c x$ for $X<x \leq 2 X$.
6. Notation: $f(x)=o(g(x))$ ("little oh") if $\lim _{x \rightarrow \infty} \frac{|f(x)|}{g(x)}=0$.
(a) Show $\prod_{p}\left(1-\frac{1}{p}\right) e^{\frac{1}{p}}$ converges.
(b) Show that $\prod_{p \leq z}\left(1-\frac{1}{p}\right)=\frac{C(1+o(1))}{\log z}$.
7. Let $\sigma>0$
(a) Show that $\prod_{p \leq x}\left(1+p^{-\sigma}\right) \leq \exp \left(O\left(x^{1-\sigma} / \log x\right)\right)$.
(b) Let $a_{p} \in \mathbb{C}$ satisfy $\left|a_{p}\right| \leq p^{-\sigma}$. Show that $f(n)=\prod_{p \mid n}\left(1+a_{p}\right) \leq \exp \left(O\left(\left(\log ^{1-\sigma} n\right)(\log \log n)^{-1}\right)\right)$.
(c) Show that $\sum_{n \leq x} f(n)=c x+O\left(x^{1-\sigma}\right)$ where $c=\prod_{p}\left(1+\frac{a_{p}}{p}\right)$.
8. Let \mathcal{A}_{n} denote a set of representative for the isomorphism classes of abelian groups of order n, $A_{n}=\# \mathcal{A}_{n}$ the number of isomorphism classes.
(a) Show that $\sum_{n \geq 1} A_{n} n^{-s}=\prod_{k=1}^{\infty} \zeta(k s)$ in the ring of formal Dirichlet series.
(b) Show that $\sum_{n \leq x} A_{n}=c x+O\left(x^{1 / 2}\right)$ where $c=\prod_{k=2}^{\infty} \zeta(k)$.
9. Let $A \subset \mathbb{N}$. We define its lower and upper natural densities by

$$
\underline{d}=\liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{n \leq N} A(n), \quad \bar{d}=\limsup _{N \rightarrow \infty} \frac{1}{N} \sum_{n \leq N} A(n) .
$$

If the two are equal the limit exists and we call it the natural density of A. Similarly, the lower and upper logarithmic densities are

$$
\underline{\delta}=\liminf _{N \rightarrow \infty} \frac{1}{\log N} \sum_{n \leq N} \frac{A(n)}{n}, \quad \bar{\delta}=\limsup _{N \rightarrow \infty} \frac{1}{\log N} \sum_{n \leq N} \frac{A(n)}{n}
$$

and a set has a logarithmic density if it lower and upper densities agree.
(a) Show that $0 \leq \underline{d} \leq \underline{\delta} \leq \bar{\delta} \leq \bar{d} \leq 1$ for all A. Conclude that if A has natural density it has logarithmic density and the two are equal.
(b) Let A be the set of integers whose most significant digit is 4 . Compute the lower and upper natural and logarithmic densities of A. Does it have natural density? Logarithmic density?

Hint for 4(a): Repeatedly integrate by parts, and for the error estimate effectuate the mantra "log is a constant function" by breaking the interval of integration in two.

Supplementary problems

A. Give the ring of formal Dirichlet series the ultrametric topology. In other words, say that $D_{n}(s) \rightarrow D(s)$ if each coefficient eventually stabilizes. This allows us to define products of Dirichlet series.
(a) Let $G(T)=\sum_{n=0}^{\infty} a_{n} T^{n} \in \mathbb{C}[[T]]$ be a formal power series, and let f be an arithmetic function with $f(1)=0$. Show that $G\left(D_{f}\right)=\sum_{n=0}^{\infty} a_{n}\left(D_{f}(s)\right)^{n}$ is a convergent series in the ring of formal Dirichlet series.
(b) Let $D(s)=\sum_{n \geq 1} b_{n} n^{-s}$ be a formal Dirichlet series with $b_{1}=1$. Realize $\log D(s)$ as a formal Dirichlet series without constant term, and show that exp $\log D(s)=D(s)$.
(c) If f is multiplicative then $\sum_{n \geq 1} f(n) n^{-s}=\prod_{p}\left(\sum_{m=0}^{\infty} f\left(p^{m}\right) p^{-s}\right)$, in the sense that the product on the right converges in the ultrametric topology.
(d) (The complex topology is different) Give a multiplicative function f and a number s such that $\prod_{p}\left(1+\left|\sum_{m=1}^{\infty} f\left(p^{m}\right) p^{-s}\right|\right)$ converges but $\sum_{n \geq 1} f(n) n^{-s}$ does not.
B. For each $z \in \mathbb{C}$ define a multiplicative function $d_{z}(n)$ giving a natural generalization of d_{k}, and satisfying $d_{z} * d_{w}=d_{z+w}$. Evaluate $d_{z}(p), d_{z}\left(p^{k}\right), d_{z}(360)$.
[Note for the future: problem on sum-free sets]

