MATH 253 - WORKSHEET 21 ITERATED INTEGRALS ON PLANAR DOMAINS

(1) Consider $f(x, y)=\left(1-x^{2}\right)^{3 / 2}$ on $D=\left\{x^{2}+y^{2} \leq 1\right\}$.
(a) What is the range of x values in the domain?

Solution: $x \in[-1,1]$.
(b) For each x value, what is the range of y values?

Solution 1: $x^{2}+y^{2} \leq 1 \Longleftrightarrow y^{2} \leq 1-x^{2} \Longleftrightarrow|y| \leq \sqrt{1-x^{2}} \Longleftrightarrow-\sqrt{1-x^{2}} \leq y \leq$ $+\sqrt{1-x^{2}}$.
Solution 2: The range of y values is determined by the intersection points of the vertical line through $(x, 0)$ with the unit circle, that is at the points (x, y) where $x^{2}+y^{2}=1$, that is at the points (x, y) where $y= \pm \sqrt{1-x^{2}}$.
(c) Write the domain in the suggested form.

Solution: $D=\left\{(x, y) \mid-1 \leq x \leq 1,-\sqrt{1-x^{2}} \leq y \leq \sqrt{1-x^{2}}\right\}$.
(d) Set up an iterated integral.

Solution:

$$
\iint_{D} f \mathrm{~d} x \mathrm{~d} y=\int_{x=-1}^{x=+1} \mathrm{~d} x \int_{y=-\sqrt{1-x^{2}}}^{y=+\sqrt{1-x^{2}}} \mathrm{~d} y\left(1-x^{2}\right)^{3 / 2}
$$

(e) Do the integral.

Solution:

$$
\begin{aligned}
\int_{x=-1}^{x=+1} \mathrm{~d} x \int_{y=-\sqrt{1-x^{2}}}^{y=+\sqrt{1-x^{2}}} \mathrm{~d} y\left(1-x^{2}\right)^{3 / 2} & =\int_{x=-1}^{x=+1} \mathrm{~d} x\left(1-x^{2}\right)^{3 / 2} \int_{y=-\sqrt{1-x^{2}}}^{y=+\sqrt{1-x^{2}}} \mathrm{~d} y \\
& =\int_{x=-1}^{x=+1} \mathrm{~d} x\left(1-x^{2}\right)^{3 / 2}\left(2 \sqrt{1-x^{2}}\right) \\
& =2 \int_{x=-1}^{x=+1} \mathrm{~d} x\left(1-x^{2}\right)^{4 / 2} \\
& =4 \int_{x=0}^{x=1} \mathrm{~d} x\left(1-x^{2}\right)^{2} \\
& =4 \int_{x=0}^{x=1} \mathrm{~d} x\left(x^{4}-2 x^{2}+1\right) \\
& =4\left(\frac{1}{5}-\frac{2}{3}+1\right)=\frac{32}{15}=2 \frac{2}{15}
\end{aligned}
$$

where we have used that $\left(1-x^{2}\right)^{2}$ is even.
(2) Let D be the finite region bounded by the curves $x=y$ and $x=2-y^{2}$. Find $\iint_{D} y \mathrm{~d} x \mathrm{~d} y$.

Solution: The points of intersection of the two curves have y such that $y=x=2-y^{2}$ so $y^{2}+y-2=0$ or $(y+2)(y-1)=0$. It follows that the intersection points are $(-2,-2)$ and $(1,1)$. Slicing the domain horizontally, we can write it as $D=\left\{(x, y) \mid-2 \leq y \leq 1,2-y^{2} \leq x \leq y\right\}$. It

[^0]follows that
\[

$$
\begin{aligned}
\iint_{D} y \mathrm{~d} x \mathrm{~d} y & =\int_{y=-2}^{y=1} \mathrm{~d} y y \int_{x=2-y^{2}}^{x=y} \mathrm{~d} x \\
& =\int_{y=-2}^{y=1} \mathrm{~d} y y\left(y+y^{2}-2\right) \\
& =\left[\frac{y^{3}}{3}+\frac{y^{4}}{4}-y^{2}\right]_{y=-2}^{y=1} \\
& =\left[\frac{1}{3}+\frac{1}{4}-1\right]-\left[-\frac{8}{3}+4-4\right] \\
& =2 \frac{1}{4} .
\end{aligned}
$$
\]

[^0]: Date: 28/10/2013.

