Math 121: Problem set 10 (due 27/3/12)

Practice problems (not for submission!)

Sections 9.2, 9.3: Series.

Sequences and Series

1. (Sanity-check test for series; you will be expected to know this)

SUPP Let $\sum_{n=1}^{\infty} a_{n}$ be a convergent series. Show that $\lim _{n \rightarrow \infty} a_{n}=0$.
(b) Show that $\sum_{n=1}^{\infty} \frac{\left(1+(-1)^{n}\right) n^{2}}{(n+1)^{2}}$ diverges.
2. Summation of series you know how to sum.
(a) Evaluate $\sum_{k=5}^{\infty} \frac{7}{8^{k}}$.
(b) (From past final) Evaluate $\sum_{k=2}^{\infty} 3^{k-1} 2^{-2 k}$.
(c) Evaluate $\sum_{k=2}^{\infty} \frac{k+1}{\pi^{2 k}}$.

Hint on the other side.
3. Determine whether the following series converge. If $a_{n} \sim b_{n}$ and both are positive then $\sum a_{n}$ and $\sum b_{n}$ either both diverge or both converge, so for some problems it is enough to point out the asymptotics. This won't work in all cases!
(a) $\sum_{n=10}^{\infty} \sqrt{\frac{n^{2}-5}{n^{3}+n}}$.
(b) $\sum_{n=1}^{\infty} \frac{2^{2 k-1}}{3^{k}+k}$
(c) $\sum_{n=1}^{\infty} \frac{1}{n \log n}$
(d) $\sum_{n=10}^{\infty} \frac{1}{n \log n(\log \log n)^{p}}$ (your answer will depend on p).
(e) $\sum_{n=0}^{\infty} \frac{x^{2 n}}{1+2^{n}}$ (your answer will depend on x).
4. Show that $\sum_{n=1}^{\infty} \frac{n^{2}\left(1+\frac{1}{n}\right) \cos \left(n^{2} x\right)}{3^{n}}$ converges absolutely for all x.

Hint on the other side.
5. A tail estimate. Let $e=\sum_{n=0}^{\infty} \frac{1}{n!}$.
(a) Show that $\sum_{n=N+1}^{\infty} \frac{1}{n!} \leq \frac{1}{(N+1)!} \frac{1}{1-\frac{1}{N+2}}$.
(b) Calculate e to within 0.01 .
(*c) Let $N \geq 1$ be an arbitrary integer. Show that $N!e$ is not an integer, and hence that e is irrational.
6. Review of Taylor expansions

RMK Recall the Lagrange form of the remainder in Taylor's formula: Let f be $(n+1)$-times differentiable in a neighbourhood of a. Then for any x in the neighbourhood there is ξ between x and a such that

$$
f(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}+\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}
$$

(a) Show that for all $x, \lim _{n \rightarrow \infty}\left|e^{x}-\sum_{k=0}^{n} \frac{1}{k!} x^{k}\right|=0$, that is that $e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$.
(*b) Show that for $|x|<1, \frac{1}{\sqrt{1-x}}=\sum_{k=0}^{\infty}\binom{2 k}{k}\binom{x}{4}^{k}$.

Hint for 2(c): Change variable (shift the index) and then connect this to $\sum_{k=0}^{\infty} \frac{k}{\left(\pi^{2}\right)^{k}}$.
Hint for 3: Get rid of "red herring" terms using an upper bound before applying d'Alambert's test.

Hint for 5(a): Take out a common factor of $\frac{1}{(N+1)!}$ and compare with a geometric series.

Exam practice: Summing series

WARNING: The following problem should not be taken as a form of medical advice.
A. The drug Synthroid (Levothyroxine) has a half-life in the body of about 7 days. Write $\eta=$ $2^{-1 / 7}$.
(a) Suppose a patient takes a dose of d milligrams once daily. What quantity remains in her body after n days?
RMK Formally we need d to denote the amout actually absorbed by the patient; we will ignore this issue.
(b) Suppose the patient has been taking the drug at that dose for n consecutive days (including today). What is the current quantity of the drug in the patient?
(c) (Tail estimate) Compare the drug levels in a patient taking the drug for $7-8$ weeks and for "infinitely many weeks". Which has a simpler formula?
DEF Let D be the drug level in the patient in the "infinite-horizon" limit.
(d) Let a_{n} denote the amount in the patient in day n. Show that $a_{n+1}=\eta a_{n}+d$, and hence that $a_{n+1}-D=\eta\left(a_{n}-D\right)$.
(e) Suppose a patient with drug level D at day -1 fails to take her medication at day 0 , but resumes taking the drug at day 1 . At what day will her level return to within 5% of D ?
RMK If a patient misses a dose of this drug, it is not recommended to "double up" the next day.
(f) Now consider a drug with a half-life of one day, still taken once daily. Suppose the patient decides to "double up" on day 1 . What is the ratio of the level of the drug at day 1 to the "infinite horizon" level?
RMK In the case of short half-life, doubling up can lead to a high dose of the drug, which isn't a good idea either.
B. A promise of one dollar next year is worth η dollars today, where $\eta<1$ (this is the "discount rate").
(a) How much would you be willing to pay to get d dollars every year for the next 99 years? every year forever? Compare the two numerical values when $\eta=0.97$.
(b) What is the present value of a promise to pay n^{2} dollars in the nth year?

Exam practice: Arithmetic with series
C. Let a_{n} be the sequence defined by $a_{0}=0, a_{1}=1$ and $a_{n+1}=a_{n}+a_{n-1}$ if $n \geq 1$ (the "Fibonacci numbers")
(a) Show that $0 \leq a_{n} \leq 2^{n}$ for all n.
(b) Show that $F(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ converges if $|x|<\frac{1}{2}$.
(c) Show that $F(x)-x=x F(x)+x^{2} F(x)$ in the region of convergence.

Hint on the other side.
(d) Let $\varphi, \bar{\varphi}$ be the roots of $x^{2}+x-1=0$. Show that $F(x)=\frac{1}{\varphi-\bar{\varphi}} \sum_{n=0}^{\infty}\left(\frac{1}{\varphi^{n}}-\frac{1}{\bar{\varphi}^{n}}\right) x^{n}$ if $|x|<\min \{|\varphi|,|\bar{\varphi}|\}$.

Supplementary problem: e

D. Given a real number x and a positive integer n set $e_{n}(x)=\left(1+\frac{x}{n}\right)^{n}$. In this problem we consider the sequence $\left\{e_{n}(x)\right\}_{n=1}^{\infty}$ for x fixed.
(a) Suppose $n>|x|$.Show that $e_{n}(x)>0$; conclude that the sequence is eventually positive.
(b) Show that if $x<0$ then $e_{n}(x) \leq 1$ for $n>|x|$. If $x \geq 0$ show that $e_{n}(x) \geq 1$ holds for all n.
(c) Show that $\frac{e_{n+1}(x)}{e_{n}(x)} \geq 1+\frac{x^{2}}{(n+x)(n+1)}$ if $(n+x)(n+1)>|x|^{2}$. Conclude that the sequence is eventually non-decreasing.
Hint: Bernoulli's inequality.
(d) Suppose $x \leq 0$. Show that $\lim _{n \rightarrow \infty} e_{n}(x)$ exists.
(e) Suppose $x \geq 0$. Show that $e_{n}(x) e_{n}(-x) \leq 1$ for all x; use (c) to show that $e_{n}(x)$ is bounded above, and show that $\lim _{n \rightarrow \infty} e_{n}(x)$ exists in this case too.
E. Let $e(x)=\lim _{n \rightarrow \infty} e_{n}(x)$. In this problem we consider $e(x)$ as a function of x.
(a) Show that $e(x) \geq 0$ for all x and that $e(0)=1$. Show that $e(x) \leq 1$ if $x \leq 0$ and $e(x) \geq 1$ if $x \geq 0$.
DEF Set $e=e(1)=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$.
(b) Show that $e_{2}(1) \leq e \leq \frac{1}{e_{2}(-1)}$ and conclude that $2.25 \leq e \leq 4$.
(c) Let $x, y \in \mathbb{R}$. Show that $e(x) e(y) e(-x-y)=1$.
(d) Deduce that $e(-x)=\frac{1}{e(x)}$ for all x and then that $e(x) e(y)=e(x+y)$ for all x, y.
(e) Show that $e(n)=e^{n}$ for all $n \in \mathbb{N}$.
(f) Show that $e(n)=e^{n}$ for all $n \in \mathbb{Z}$.
(g) Show that $e\left(\frac{p}{q}\right)=e^{p / q}$ for all $p, q \in \mathbb{Z}$ with $q \neq 0$.
(**h) Show that $e(x)=e^{x}$ for all $x \in \mathbb{R}$.
F.
(a) Show that the coefficient of x^{k} in $\left(1+\frac{x}{n}\right)^{n}$ tends to $\frac{1}{k!}$ as n tends to ∞.
(b) Show that $\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$.

Hint: Tail estimates.

