Math 121: Problem set 10 (due 27/3/12)

Practice problems (not for submission!)

Sections 9.2, 9.3: Series.

Sequences and Series

- (Sanity-check test for series; you will be expected to know this) SUPP Let Σ_{n=1}[∞] a_n be a convergent series. Show that lim_{n→∞} a_n = 0. (b) Show that Σ_{n=1}[∞] (1+(-1)ⁿ)n²/(n+1)² diverges.
- 2. Summation of series you know how to sum.
 - (a) Evaluate $\sum_{k=5}^{\infty} \frac{7}{8^k}$.
 - (b) (From past final) Evaluate $\sum_{k=2}^{\infty} 3^{k-1} 2^{-2k}$.
 - (c) Evaluate $\sum_{k=2}^{\infty} \frac{k+1}{\pi^{2k}}$. *Hint on the other side.*
- 3. Determine whether the following series converge. If $a_n \sim b_n$ and both are positive then $\sum a_n$ and $\sum b_n$ either both diverge or both converge, so for some problems it is enough to point out the asymptotics. This won't work in all cases!

(a)
$$\sum_{n=10}^{\infty} \sqrt{\frac{n^2-5}{n^3+n}}$$
.

(b)
$$\sum_{n=1}^{\infty} \frac{2^{2k-1}}{2^{k-1}}$$

(a)
$$\sum_{n=1}^{\infty} \frac{3^{n+k}}{3^{n+k}}$$

- (c) $\sum_{n=1}^{\infty} \frac{1}{n \log n}$
- (d) $\sum_{n=10}^{\infty} \frac{1}{n \log n (\log \log n)^p}$ (your answer will depend on *p*).
- (e) $\sum_{n=0}^{\infty} \frac{x^{2n}}{1+2^n}$ (your answer will depend on *x*).
- 4. Show that $\sum_{n=1}^{\infty} \frac{n^2(1+\frac{1}{n})\cos(n^2x)}{3^n}$ converges absolutely for all *x*. *Hint on the other side.*
- 5. A tail estimate. Let $e = \sum_{n=0}^{\infty} \frac{1}{n!}$. (a) Show that $\sum_{n=N+1}^{\infty} \frac{1}{n!} \le \frac{1}{(N+1)!} \frac{1}{1-\frac{1}{N+2}}$.
 - (b) Calculate *e* to within 0.01.
 - (*c) Let $N \ge 1$ be an arbitrary integer. Show that N!e is not an integer, and hence that e is irrational.
- 6. Review of Taylor expansions
 - RMK Recall the Lagrange form of the remainder in Taylor's formula: Let f be (n+1)-times differentiable in a neighbourhood of a. Then for any x in the neighbourhood there is ξ between x and a such that

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}.$$

(a) Show that for all x, $\lim_{n\to\infty} \left| e^x - \sum_{k=0}^n \frac{1}{k!} x^k \right| = 0$, that is that $e^x = \sum_{k=0}^\infty \frac{x^k}{k!}$. (*b) Show that for |x| < 1, $\frac{1}{\sqrt{1-x}} = \sum_{k=0}^\infty \binom{2k}{k} \left(\frac{x}{4}\right)^k$. *Hint* for 2(c): Change variable (shift the index) and then connect this to $\sum_{k=0}^{\infty} \frac{k}{(\pi^2)^k}$.

Hint for 3: Get rid of "red herring" terms using an upper bound before applying d'Alambert's test.

Hint for 5(a): Take out a common factor of $\frac{1}{(N+1)!}$ and compare with a geometric series.

Exam practice: Summing series

WARNING: The following problem should not be taken as a form of medical advice.

- A. The drug Synthroid (Levothyroxine) has a half-life in the body of about 7 days. Write $\eta =$ $2^{-1/7}$
- (a) Suppose a patient takes a dose of d milligrams once daily. What quantity remains in her body after *n* days?
 - RMK Formally we need d to denote the amout actually absorbed by the patient; we will ignore this issue.
 - (b) Suppose the patient has been taking the drug at that dose for *n* consecutive days (including today). What is the current quantity of the drug in the patient?
 - (c) (Tail estimate) Compare the drug levels in a patient taking the drug for 7-8 weeks and for "infinitely many weeks". Which has a simpler formula?

DEF Let D be the drug level in the patient in the "infinite-horizon" limit.

- (d) Let a_n denote the amount in the patient in day n. Show that $a_{n+1} = \eta a_n + d$, and hence that $a_{n+1} - D = \eta (a_n - D)$.
- (e) Suppose a patient with drug level D at day -1 fails to take her medication at day 0, but resumes taking the drug at day 1. At what day will her level return to within 5% of D?
- RMK If a patient misses a dose of this drug, it is not recommended to "double up" the next dav.
- (f) Now consider a drug with a half-life of one day, still taken once daily. Suppose the patient decides to "double up" on day 1. What is the ratio of the level of the drug at day 1 to the "infinite horizon" level?
- RMK In the case of short half-life, doubling up can lead to a high dose of the drug, which isn't a good idea either.
- B. A promise of one dollar next year is worth η dollars today, where $\eta < 1$ (this is the "discount rate").
 - (a) How much would you be willing to pay to get d dollars every year for the next 99 years? every year forever? Compare the two numerical values when $\eta = 0.97$.
 - (b) What is the present value of a promise to pay n^2 dollars in the *n*th year?

Exam practice: Arithmetic with series

- C. Let a_n be the sequence defined by $a_0 = 0$, $a_1 = 1$ and $a_{n+1} = a_n + a_{n-1}$ if $n \ge 1$ (the "Fibonacci numbers")

 - (a) Show that 0 ≤ a_n ≤ 2ⁿ for all *n*.
 (b) Show that F(x) = ∑_{n=0}[∞] a_nxⁿ converges if |x| < ¹/₂.
 - (c) Show that $F(x) x = xF(x) + x^2F(x)$ in the region of convergence. Hint on the other side.
 - (d) Let $\varphi, \bar{\varphi}$ be the roots of $x^2 + x 1 = 0$. Show that $F(x) = \frac{1}{\varphi \bar{\varphi}} \sum_{n=0}^{\infty} \left(\frac{1}{\varphi^n} \frac{1}{\bar{\varphi}^n} \right) x^n$ if $|x| < \min\{|\varphi|, |\bar{\varphi}|\}.$

Supplementary problem: *e*

- D. Given a real number x and a positive integer n set $e_n(x) = (1 + \frac{x}{n})^n$. In this problem we consider the sequence $\{e_n(x)\}_{n=1}^{\infty}$ for x fixed.
 - (a) Suppose n > |x|. Show that $e_n(x) > 0$; conclude that the sequence is eventually positive.
 - (b) Show that if x < 0 then $e_n(x) \le 1$ for n > |x|. If $x \ge 0$ show that $e_n(x) \ge 1$ holds for all n.
 - (c) Show that $\frac{e_{n+1}(x)}{e_n(x)} \ge 1 + \frac{x^2}{(n+x)(n+1)}$ if $(n+x)(n+1) > |x|^2$. Conclude that the sequence is eventually non-decreasing. *Hint:* Bernoulli's inequality.
 - (d) Suppose $x \le 0$. Show that $\lim_{n\to\infty} e_n(x)$ exists.
 - (e) Suppose $x \ge 0$. Show that $e_n(x)e_n(-x) \le 1$ for all x; use (c) to show that $e_n(x)$ is bounded above, and show that $\lim_{n\to\infty} e_n(x)$ exists in this case too.
- E. Let $e(x) = \lim_{n \to \infty} e_n(x)$. In this problem we consider e(x) as a function of x.
 - (a) Show that $e(x) \ge 0$ for all x and that e(0) = 1. Show that $e(x) \le 1$ if $x \le 0$ and $e(x) \ge 1$ if $x \ge 0$.

DEF Set
$$e = e(1) = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$$
.

- (b) Show that $e_2(1) \le e \le \frac{1}{e_2(-1)}$ and conclude that $2.25 \le e \le 4$.
- (c) Let $x, y \in \mathbb{R}$. Show that e(x)e(y)e(-x-y) = 1.
- (d) Deduce that $e(-x) = \frac{1}{e(x)}$ for all x and then that e(x)e(y) = e(x+y) for all x, y.
- (e) Show that $e(n) = e^n$ for all $n \in \mathbb{N}$.
- (f) Show that $e(n) = e^n$ for all $n \in \mathbb{Z}$.
- (g) Show that $e(\frac{p}{q}) = e^{p/q}$ for all $p, q \in \mathbb{Z}$ with $q \neq 0$.
- (**h) Show that $e(x) = e^x$ for all $x \in \mathbb{R}$.

F.

- (a) Show that the coefficient of x^k in $\left(1 + \frac{x}{n}\right)^n$ tends to $\frac{1}{k!}$ as *n* tends to ∞ .
- (b) Show that $\lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n = \sum_{k=0}^{\infty} \frac{x^k}{k!}$. *Hint*: Tail estimates.