Math 613: Problem set 3 (due 4/10/09)

For a group G acting on a space X write $G \backslash X$ for the space of orbits. If X is a topological space, G a topological group and the action $G \times X \rightarrow X$ is continuous we endow $G \backslash X$ with the quotient topology.

The moduli space of elliptic curves

1. Let $T=\left(\begin{array}{ll}1 & 1 \\ & 1\end{array}\right), S=\left(\begin{array}{ll} & -1 \\ 1 & \end{array}\right)$ and let $\Gamma<\mathrm{SL}_{2}(\mathbb{Z})$ be the subgroup they generate, Γ_{∞} the subgroup generated by $\pm T$ (note that $-I$ acts trivially on the upper half-plane). Let \mathcal{S} denote the strip $\left\{|\Re(\tau)| \leq \frac{1}{2}\right\}$ and let $\mathcal{F}=\left\{\tau \in \mathbb{H}| | \tau\left|\geq 1,|\Re(\tau)| \leq \frac{1}{2}\right\}\right.$.
(a) Show that \mathcal{S} is a fundamental domain for $\Gamma_{\infty} \backslash \mathbb{H}$, hence surjects on $\Gamma \backslash \mathbb{H}$.
(b) Let $\tau=x+i y \in \mathcal{S}$. Show that there are only finitely many $y^{\prime} \geq y$ such that there exists x^{\prime} for which $\tau^{\prime}=x^{\prime}+i y^{\prime} \in \mathrm{SL}_{2}(\mathbb{Z}) \cdot \tau$.
Hint: Recall that $y(\gamma \tau)=\frac{y(\tau)}{|c \tau+d|^{2}}$, and consider the real and imaginary parts of $c \tau+d$ separately.
(c) Let $f: \mathcal{S} \rightarrow \mathcal{S}$ be as follows: if $|\tau| \geq 1$ set $f(\tau)=\tau$. Otherwise, let $f(\tau)=T^{m} S \tau$ with m chosen so that $f(\tau) \in \mathcal{S}$. Show that $\mathfrak{I}(f(\tau))>\mathfrak{I}(\tau)$.
(d) Conclude that \mathcal{F} surjects on $\Gamma \backslash \mathbb{H}$.
(e) Let $\tau \in \mathcal{F}$ and $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$ be such that $\gamma \tau \in \mathcal{F}$ but $\gamma \neq \pm I$. Show that one of the following holds:
(1) $|\Re(\tau)|=\frac{1}{2}$ and $\gamma \in\left\{ \pm T, \pm T^{-1}\right\}$.
(2) $|\tau|=1$ and $\gamma \in\{ \pm S\}$.
(3) $\tau=-\frac{1}{2}+\frac{\sqrt{3}}{2} i$
(f) Show that $-I \in \Gamma$ and conclude that $\Gamma=\mathrm{SL}_{2}(\mathbb{Z})$ and that \mathcal{F} is a fundamental domain for $Y(1)=\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}$.

OPT Let $E=\mathbb{C} / \Lambda$ be an elliptic curve.
(a) Show that up to isomorphism of elliptic curves we may assume that $1 \in \Lambda$ and that it is a non-zero element of minimal length.
(b) Let $\tau \in \mathbb{H} \cap \Lambda$ be of minimal norm. Show that $|\tau| \geq 1$ and that $|\Re(\tau)| \leq \frac{1}{2}$, that is that $\tau \in \mathcal{F}$.
(c) Show for any $z \in \mathbb{C}$ there is $z^{\prime} \in z+\Lambda_{\tau}$ with $\left|z^{\prime}\right|<\frac{1}{2}+\frac{1}{2}|\tau| \leq|\tau|$ and conclude that $\Lambda=\Lambda_{\tau}$, that is that \mathcal{F} surjects on $Y(1)$.

- Using 1(e) it follows again that \mathcal{F} is a fundamental domain.

3. Let $d A(\tau)=\frac{d x d y}{y^{2}}$ denote the hyperbolic area measure on \mathbb{H}. Calculate $\int_{\mathcal{F}} d A(\tau)$.

The moduli space of elliptic curves with level structure

4. Let $\Lambda<\mathbb{C}$ be a lattice, $E=\mathbb{C} / \Lambda$ the associated elliptic curve. For an integer N write $E[N]$ for the N-torsion points, that is the points $x \in E$ such that $N \cdot x=0$.
(a) Show that $E[N] \simeq(\mathbb{Z} / N \mathbb{Z})^{2}$ as abelian groups.

- We now study the action of $G=\mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z})$ on $E[N]$.
(b) Show that G acts transitively on the set of points in $E[N]$ whose order is N exactly. Find the stabilizer of $\binom{1}{0}$ (call it $K_{1}(N)$) and the number of such points.
(c) Conclude that G acts transitively on the set of subgroups of $E[N]$ which is cyclic of order N. Find the stabilizer of the subgroup $\left\{\binom{*}{0}\right\}\left(\right.$ call it $\left.K_{0}(N)\right)$ and the number of such subgroups.
(d) Find the order of $\mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z})$. Write in the form $N^{3} \prod_{p \mid N} f(p)$.

5. Let $Y_{0}(N)$ denote the set of isomorphism classes of pairs (E, C) where E is a complex elliptic curve and $C \subset E$ is a subgroup isomorphic to $C_{N}\left((E, C) \sim\left(E, C^{\prime}\right)\right.$ if there exists an isomorphism $f: E \rightarrow E^{\prime}$ such that $\left.f(C)=C^{\prime}\right)$.
(a) Show that the map $\mathbb{H} \rightarrow Y_{1}(N)$ mapping τ to the class of the pair $\left(\mathbb{C} / \Lambda_{\tau}, \frac{1}{N} \mathbb{Z} / \mathbb{Z}\right)$ (i.e. the subgroup of $\mathbb{C} / \Lambda_{\tau}$ generated by $\frac{1}{N}+\Lambda_{\tau}$) is surjective.
(b) By analyzing the isomorphism relation show that $Y_{0}(N)=\Gamma_{0}(N) \backslash \mathbb{H}$ where $\Gamma_{0}(N)$ is the inverse image in $\mathrm{SL}_{2}(\mathbb{Z})$ of $K_{0}(N)$.

OPT Let $Y_{1}(N)$ denote the set of isomorphism classes of pairs (E, P) where E is a complex elliptic curve and $P \in E[N]$ has order N exactly.
(a) Show that the map $\mathbb{H} \rightarrow Y_{1}(N)$ mapping τ to the class of the pair $\left(\mathbb{C} / \Lambda_{\tau}, \frac{1}{N}+\Lambda_{\tau}\right)$ is surjective.
(b) By analyzing the isomorphism relation show that $Y_{1}(N)=\Gamma_{1}(N) \backslash \mathbb{H}$ where $\Gamma_{1}(N)$ is the inverse image in $\mathrm{SL}_{2}(\mathbb{Z})$ of $K_{0}(N)$.

OPT Let $Y(N)$ denote the set of isomorphism classes of triples (E, P, Q) where E is a complex elliptic curve and $P, Q \in E[N]$ are an ordered basis for $E[N]$ as a free $\mathbb{Z} / N \mathbb{Z}$-module.
(a) Show that the map $\mathbb{H} \rightarrow Y(N)$ mapping τ to the class of the triple $\left(\mathbb{C} / \Lambda_{\tau}, \frac{1}{N} \mathbb{Z}+\Lambda_{\tau}, \frac{\tau}{N}+\Lambda_{\tau}\right)$ is surjective.
(b) By analyzing the isomorphism relation show that $Y(N)=\Gamma(N) \backslash \mathbb{H}$ where $\Gamma(N)$ is the kernel of the $\operatorname{map} \mathrm{SL}_{2}(\mathbb{Z}) \rightarrow \mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z})$.

Hyperbolic Convergence Lemma

Let $\Gamma<\mathrm{SL}_{2}(\mathbb{R})$ be discrete and assume that $\Gamma_{\infty}=\Gamma \cap P$ is non-trivial (i.e. infinite), with the image in $\operatorname{PSL}_{2}(\mathbb{R})$ generated by $\left(\begin{array}{cc}1 & h \\ & 1\end{array}\right)$.
8. (Counting Lemma)
(a) Show that a fundamental domain for $\Gamma_{\infty} \backslash \mathbb{H}$ is the strip $\left\{|\mathfrak{R}(z)| \leq \frac{h}{2}\right\}$.
(b) Calculate the hyperbolic area of the half-strip $\left\{x+i y| | x \left\lvert\, \leq \frac{h}{2}\right., y \geq \frac{1}{Y}\right\}$.
(c) For $z \in \mathbb{H}$ show that there exists $C>0$ (depending locally uniformly on z) such that for all $Y>0, \# R_{Y} \leq C(1+Y)$ where

$$
R_{Y}=\left\{\Gamma_{\infty} \gamma \in \Gamma_{\infty} \backslash \Gamma \left\lvert\, y(\gamma z) \geq \frac{1}{Y}\right.\right\} .
$$

Hint: Let B be a hyperbolic ball around z of small enough radius so that if $\gamma \in \Gamma$ satisfies $\gamma B \cap B \neq \emptyset$ then γ belongs to the finite group Γ_{z}, and consider the set of images of $\Gamma \cdot B$ in the strip.

For $\mathfrak{R}(s)>1$ we define the non-holomorphic Eisenstein series to be

$$
E(z ; s)=\sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma} y(\gamma z)^{-s}
$$

9. (Convergence Lemma)
(a) Show that the series $E(z ; \sigma)$ converges absolutely if $\sigma>1$.

Hint: Show that $E(\sigma ; z) \leq A+\sum_{n=1}^{\infty}\left(\# R_{n+1}-\# R_{n}\right) n^{-\sigma}$ where A is easily controlled. Now use summation by parts.
(b) Conclude that $E(z ; s)$ extends to a holomorphic function of s in $\Re(s)>1$.

