Math 613: Problem set 3 (due 4/10/09)

For a group G acting on a space X write $G \setminus X$ for the space of orbits. If X is a topological space, G a topological group and the action $G \times X \to X$ is continuous we endow $G \setminus X$ with the quotient topology.

The moduli space of elliptic curves

- 1. Let $T = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, $S = \begin{pmatrix} -1 \\ 1 & -1 \end{pmatrix}$ and let $\Gamma < SL_2(\mathbb{Z})$ be the subgroup they generate, Γ_{∞} the subgroup generated by $\pm T$ (note that -I acts trivially on the upper half-plane). Let S denote the strip $\{|\Re(\tau)| \leq \frac{1}{2}\}$ and let $\mathcal{F} = \{\tau \in \mathbb{H} \mid |\tau| \geq 1, |\Re(\tau)| \leq \frac{1}{2}\}.$
 - (a) Show that S is a fundamental domain for $\Gamma_{\infty} \setminus \mathbb{H}$, hence surjects on $\Gamma \setminus \mathbb{H}$.
 - (b) Let $\tau = x + iy \in S$. Show that there are only finitely many $y' \ge y$ such that there exists x'for which $\tau' = x' + iy' \in SL_2(\mathbb{Z}) \cdot \tau$. *Hint*: Recall that $y(\gamma \tau) = \frac{y(\tau)}{|c\tau+d|^2}$, and consider the real and imaginary parts of $c\tau + d$ separately.
 - (c) Let $f: S \to S$ be as follows: if $|\tau| \ge 1$ set $f(\tau) = \tau$. Otherwise, let $f(\tau) = T^m S \tau$ with m chosen so that $f(\tau) \in S$. Show that $\mathfrak{I}(f(\tau)) > \mathfrak{I}(\tau)$.
 - (d) Conclude that \mathcal{F} surjects on $\Gamma \setminus \mathbb{H}$.
 - (e) Let $\tau \in \mathcal{F}$ and $\gamma \in SL_2(\mathbb{Z})$ be such that $\gamma \tau \in \mathcal{F}$ but $\gamma \neq \pm I$. Show that one of the following holds:
 - (1) $|\Re(\tau)| = \frac{1}{2}$ and $\gamma \in \{\pm T, \pm T^{-1}\}.$ (2) $|\tau| = 1$ and $\gamma \in \{\pm S\}.$
 - (3) $\tau = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$ (f) Show that $-I \in \Gamma$ and conclude that $\Gamma = SL_2(\mathbb{Z})$ and that \mathcal{F} is a fundamental domain for $Y(1) = \operatorname{SL}_2(\mathbb{Z}) \setminus \mathbb{H}.$

OPT Let $E = \mathbb{C}/\Lambda$ be an elliptic curve.

- (a) Show that up to isomorphism of elliptic curves we may assume that $1 \in \Lambda$ and that it is a non-zero element of minimal length.
- (b) Let $\tau \in \mathbb{H} \cap \Lambda$ be of minimal norm. Show that $|\tau| \ge 1$ and that $|\Re(\tau)| \le \frac{1}{2}$, that is that $au\in\mathcal{F}.$
- (c) Show for any $z \in \mathbb{C}$ there is $z' \in z + \Lambda_{\tau}$ with $|z'| < \frac{1}{2} + \frac{1}{2} |\tau| \le |\tau|$ and conclude that $\Lambda = \Lambda_{\tau}$, that is that \mathcal{F} surjects on Y(1).
- Using 1(e) it follows again that \mathcal{F} is a fundamental domain.

3. Let
$$dA(\tau) = \frac{dxdy}{y^2}$$
 denote the hyperbolic area measure on \mathbb{H} . Calculate $\int_{\mathcal{F}} dA(\tau)$.

The moduli space of elliptic curves with level structure

- 4. Let $\Lambda < \mathbb{C}$ be a lattice, $E = \mathbb{C}/\Lambda$ the associated elliptic curve. For an integer *N* write E[N] for the *N*-torsion points, that is the points $x \in E$ such that $N \cdot x = 0$.
 - (a) Show that $E[N] \simeq (\mathbb{Z}/N\mathbb{Z})^2$ as abelian groups.
 - We now study the action of $G = SL_2(\mathbb{Z}/N\mathbb{Z})$ on E[N].
 - (b) Show that *G* acts transitively on the set of points in E[N] whose order is *N* exactly. Find the stabilizer of $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ (call it $K_1(N)$) and the number of such points.
 - (c) Conclude that G acts transitively on the set of subgroups of E[N] which is cyclic of order N. Find the stabilizer of the subgroup $\left\{ \begin{pmatrix} * \\ 0 \end{pmatrix} \right\}$ (call it $K_0(N)$) and the number of such subgroups.
 - (d) Find the order of $SL_2(\mathbb{Z}/N\mathbb{Z})$. Write in the form $N^3 \prod_{p|N} f(p)$.
- 5. Let $Y_0(N)$ denote the set of isomorphism classes of pairs (E,C) where *E* is a complex elliptic curve and $C \subset E$ is a subgroup isomorphic to C_N $((E,C) \sim (E,C')$ if there exists an isomorphism $f: E \to E'$ such that f(C) = C'.
 - (a) Show that the map $\mathbb{H} \to Y_1(N)$ mapping τ to the class of the pair $(\mathbb{C}/\Lambda_{\tau}, \frac{1}{N}\mathbb{Z}/\mathbb{Z})$ (i.e. the subgroup of $\mathbb{C}/\Lambda_{\tau}$ generated by $\frac{1}{N} + \Lambda_{\tau}$) is surjective.
 - (b) By analyzing the isomorphism relation show that $Y_0(N) = \Gamma_0(N) \setminus \mathbb{H}$ where $\Gamma_0(N)$ is the inverse image in $SL_2(\mathbb{Z})$ of $K_0(N)$.
- OPT Let $Y_1(N)$ denote the set of isomorphism classes of pairs (E, P) where *E* is a complex elliptic curve and $P \in E[N]$ has order *N* exactly.
 - (a) Show that the map $\mathbb{H} \to Y_1(N)$ mapping τ to the class of the pair $(\mathbb{C}/\Lambda_{\tau}, \frac{1}{N} + \Lambda_{\tau})$ is surjective.
 - (b) By analyzing the isomorphism relation show that $Y_1(N) = \Gamma_1(N) \setminus \mathbb{H}$ where $\Gamma_1(N)$ is the inverse image in $SL_2(\mathbb{Z})$ of $K_0(N)$.
- OPT Let Y(N) denote the set of isomorphism classes of triples (E, P, Q) where *E* is a complex elliptic curve and $P, Q \in E[N]$ are an ordered basis for E[N] as a free $\mathbb{Z}/N\mathbb{Z}$ -module.
 - (a) Show that the map $\mathbb{H} \to Y(N)$ mapping τ to the class of the triple $\left(\mathbb{C}/\Lambda_{\tau}, \frac{1}{N}\mathbb{Z} + \Lambda_{\tau}, \frac{\tau}{N} + \Lambda_{\tau}\right)$ is surjective.
 - (b) By analyzing the isomorphism relation show that $Y(N) = \Gamma(N) \setminus \mathbb{H}$ where $\Gamma(N)$ is the kernel of the map $SL_2(\mathbb{Z}) \to SL_2(\mathbb{Z}/N\mathbb{Z})$.

Hyperbolic Convergence Lemma

Let $\Gamma < SL_2(\mathbb{R})$ be discrete and assume that $\Gamma_{\infty} = \Gamma \cap P$ is non-trivial (i.e. infinite), with the image in $PSL_2(\mathbb{R})$ generated by $\begin{pmatrix} 1 & h \\ & 1 \end{pmatrix}$.

- 8. (Counting Lemma)
 - (a) Show that a fundamental domain for $\Gamma_{\infty} \setminus \mathbb{H}$ is the strip $\{|\Re(z)| \leq \frac{h}{2}\}$.
 - (b) Calculate the hyperbolic area of the half-strip $\{x + iy \mid |x| \le \frac{h}{2}, y \ge \frac{1}{Y}\}$.
 - (c) For $z \in \mathbb{H}$ show that there exists C > 0 (depending locally uniformly on z) such that for all Y > 0, $\#R_Y \le C(1+Y)$ where

$$R_Y = \left\{ \Gamma_{\infty} \gamma \in \Gamma_{\infty} \backslash \Gamma \mid y(\gamma z) \geq \frac{1}{Y} \right\}.$$

Hint: Let *B* be a hyperbolic ball around *z* of small enough radius so that if $\gamma \in \Gamma$ satisfies $\gamma B \cap B \neq \emptyset$ then γ belongs to the finite group Γ_z , and consider the set of images of $\Gamma \cdot B$ in the strip.

For $\Re(s) > 1$ we define the *non-holomorphic Eisenstein series* to be

$$E(z;s) = \sum_{\gamma \in \Gamma_{\infty} \setminus \Gamma} y(\gamma z)^{-s}$$

- 9. (Convergence Lemma)
 - (a) Show that the series $E(z; \sigma)$ converges absolutely if $\sigma > 1$. *Hint*: Show that $E(\sigma; z) \le A + \sum_{n=1}^{\infty} (\#R_{n+1} - \#R_n) n^{-\sigma}$ where *A* is easily controlled. Now use summation by parts.
 - (b) Conclude that E(z;s) extends to a holomorphic function of s in $\Re(s) > 1$.