Math 422/501: Problem set 11 (due 25/11/09)

The discriminant

Let L / K be a separable extension, and let N / K be its normal closure. Let $n=[L: K]=$ \# $\operatorname{Hom}_{K}(L, N)$, with an enumeration $\operatorname{Hom}_{K}(L, N)=\left\{\mu_{i}\right\}_{i=1}^{n}$. Given $\left\{\omega_{j}\right\}_{j=1}^{n} \subset L$ let $\Omega \in M_{n}(L)$ be the matrix with $\Omega_{i, j}=\mu_{i}\left(\omega_{j}\right)$ and set:

$$
d_{L / K}\left(\omega_{1}, \ldots, \omega_{n}\right)=(\operatorname{det} \Omega)^{2}
$$

In particular, write $d_{L / K}(\alpha)=d_{L / K}\left(1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}\right)$.

1. Let $\left\{\omega_{j}\right\}_{j=1}^{n} \subset L$.
(a) Show that $d_{L / K}\left(\omega_{1}, \ldots, \omega_{n}\right) \in K$.
(b) Show that $d_{L / K}\left(\omega_{1}, \ldots, \omega_{n}\right) \neq 0$ iff $\left\{\omega_{j}\right\}_{j=1}^{n}$ is a basis for L over K.
(c) Show that $d_{L / K}(\alpha) \neq 0$ iff $L=K(\alpha)$.
(d) Show that if $d_{L / K}(\alpha) \neq 0$ then it is the discriminant of the minimal polynomial of α.
2. (The case $K=\mathbb{Q})$ Let L be a number field of degree n over \mathbb{Q}. Let $\left\{\omega_{i}\right\}_{i=1}^{n},\left\{\omega_{j}^{\prime}\right\}_{j=1}^{n} \subset L$ be Q-bases of L so that the abelian groups $M=\mathbb{Z} \omega_{1} \oplus \cdots \oplus \mathbb{Z} \omega_{n}$ and $N=\mathbb{Z} \omega_{1}^{\prime} \oplus \cdots \oplus \mathbb{Z} \omega_{n}^{\prime}$ satisfy $N \subset M$.
(a) Show that the sum $\oplus_{i=1}^{n}\left(\mathbb{Z} \omega_{i}\right)$ is indeed direct.
(b) Show that $d_{L / \mathbb{Q}}\left(\omega_{1}^{\prime}, \ldots, \omega_{n}^{\prime}\right)=D d_{L / \mathbb{Q}}\left(\omega_{1}, \ldots, \omega_{n}\right)$ for some positive integer D.

Hint: Relate the matrices Ω and Ω^{\prime}.
(c) Show that when $M=N$ we have $d_{L / \mathbb{Q}}\left(\omega_{1}, \ldots, \omega_{n}\right)=d_{L / \mathbb{Q}}\left(\omega_{1}^{\prime}, \ldots, \omega_{n}^{\prime}\right)$, in other words that the discriminant of a basis is really a function of the Z-module generated by that basis.
(d) Say $\omega_{j}^{\prime}=a_{j} \omega_{j}$ for some $a_{j} \in \mathbb{Z}$. Show that $D=[M: N]^{2}$.

REMARK (c),(d) are special cases of the general identity $d_{L / \mathbb{Q}}(N)=[M: N]^{2} d_{L / \mathbb{Q}}(M)$.

Rings of integers

FACT. (Integral basis Theorem) Let K be a number field of degree $n($ that is, $[K: \mathbb{Q}]=n$), and let $\mathscr{O}_{K} \subset K$ be the set of algebraic integers in K. Then there exists a basis $\left\{\alpha_{i}\right\}_{i=1}^{n}$ of K over \mathbb{Q} so that $\mathscr{O}_{K}=\oplus_{i=1}^{n} \mathbb{Z} \alpha_{i}$. Moreover, $d_{K} \stackrel{\text { def }}{=} d_{K / \mathbb{Q}}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is an integer.
3. Let D be a square-free integer (this means a product of distinct primes up to sign) and let $K=\mathbb{Q}(\sqrt{D})$.
(a) Let $\alpha \in K$. Show that α is an algebraic integer iff $\operatorname{Tr} \alpha, N \alpha \in \mathbb{Z}$ (trace and norm from K to \mathbb{Q}).
(b) Show that $\frac{1+\sqrt{D}}{2}$ is an algebraic integer iff $D \equiv 1$ (4).
(c) Show that $\mathbb{Z}[\sqrt{D}]=\mathbb{Z} \oplus \mathbb{Z} \sqrt{D} \subset \mathscr{O}_{K} \subset \mathbb{Z} \frac{1}{2} \oplus \mathbb{Z} \frac{\sqrt{D}}{2}$.

Hint: write $\alpha \in K$ in the form $a+b \sqrt{D}$ for $a, b \in \mathbb{Q}$.
(d) By considering the equation $x^{2}-y^{2} D \equiv 0(4)$ in $\mathbb{Z} / 4 \mathbb{Z}$, show that if $D \equiv 2,3$ (4) then $\mathscr{O}_{K}=\mathbb{Z}[\sqrt{D}]=\{a+b \sqrt{D} \mid a, b \in \mathbb{Z}\}$.
(e) Show that when $D \equiv 1$ (4) $\mathscr{O}_{K}=\mathbb{Z}\left[\frac{1+\sqrt{D}}{2}\right]=\left\{\left.\frac{a+b \sqrt{D}}{2} \right\rvert\, a, b \in \mathbb{Z}, a \equiv b(2)\right\}$.

- What about $D \equiv 0(4)$?

4. (Dedekind) Let $K=\mathbb{Q}(\theta)$ where θ is a root of $f(x)=x^{3}-x^{2}-2 x-8$.
(a) Show that f is irreducible over \mathbb{Q} and find its Galois group.
(b) Show that $1, \theta, \theta^{2}$ are all algebraic integers.
(c) Let $\eta=\frac{\theta^{2}+\theta}{2}$. Show that $\eta^{3}-3 \eta^{2}-10 \eta-8=0$ and conclude that is an algebraic integer a well.
(d) Show that $1, \theta, \eta$ are linearly independent over \mathbb{Q}.
(e) Let $M=\mathbb{Z} \oplus \mathbb{Z} \boldsymbol{\theta} \oplus \mathbb{Z} \eta$ and let $N=\mathbb{Z}[\boldsymbol{\theta}]=\mathbb{Z} \oplus \mathbb{Z} \boldsymbol{\theta} \oplus \mathbb{Z} \boldsymbol{\theta}^{2}$. Show that $N \subset M$.
(f) Show that $d_{K / \mathbb{Q}}(\theta)=\Delta(f)=-4 \cdot 503$.
(g) Find $d_{K / \mathbb{Q}}(1, \theta, \eta)$.

Hint: You can be confident in your answer by consulting 2(a).
(h) Show that $\{1, \theta, \eta\}$ is an integral basis.

Hint: Let $\{\alpha, \beta, \gamma\}$ be an integral basis and consider $\frac{d_{K / \mathbb{Q}}(1, \theta, \eta)}{d_{K / \mathbb{Q}}(\alpha, \beta, \gamma)}$.
(i) Let $\delta=A+B \theta+C \eta$ with $A, B, C \in \mathbb{Z}$. Show that $2 \mid d_{K / \mathbb{Q}}(\delta)$. Conclude that the set of algebraic integers of K is not of the form $\mathbb{Z}[\boldsymbol{\delta}]$.

