There exists a weakly mixing billiard in a polygon

Jon Chaika
University of Utah
June 11, 2020

Joint with Giovanni Forni

Billiard in a polygon, Q

Rules:

- Point mass in the polygon.

Billiard in a polygon, Q

Rules:

- Point mass in the polygon.
- Travels in a straight line until it hits a side.

Billiard in a polygon, Q

Rules:

- Point mass in the polygon.
- Travels in a straight line until it hits a side.
- After hitting the side, angle of incidence=angle of reflection.

Billiard in a polygon, Q

Rules:

- Point mass in the polygon.
- Travels in a straight line until it hits a side.
- After hitting the side, angle of incidence=angle of reflection.
- Flow is not defined at corners of the polygon.

Billiard in a polygon, Q

Rules:

- Point mass in the polygon.
- Travels in a straight line until it hits a side.
- After hitting the side, angle of incidence=angle of reflection.
- Flow is not defined at corners of the polygon.

Billiard in a polygon, Q

Rules:

- Point mass in the polygon.
- Travels in a straight line until it hits a side.
- After hitting the side, angle of incidence=angle of reflection.
- Flow is not defined at corners of the polygon.

Billiard in a polygon, Q

Rules:

- Point mass in the polygon.
- Travels in a straight line until it hits a side.
- After hitting the side, angle of incidence=angle of reflection.
- Flow is not defined at corners of the polygon.

Billiard in a polygon, Q

Rules:

- Point mass in the polygon.
- Travels in a straight line until it hits a side.
- After hitting the side, angle of incidence=angle of reflection.
- Flow is not defined at corners of the polygon.

Billiard in a polygon, Q

Rules:

- Point mass in the polygon.
- Travels in a straight line until it hits a side.
- After hitting the side, angle of incidence=angle of reflection.
- Flow is not defined at corners of the polygon.

Billiard in a polygon, Q

Rules:

- Point mass in the polygon.
- Travels in a straight line until it hits a side.
- After hitting the side, angle of incidence=angle of reflection.
- Flow is not defined at corners of the polygon.

Billiard in a polygon, Q

Rules:

- Point mass in the polygon.
- Travels in a straight line until it hits a side.
- After hitting the side, angle of incidence=angle of reflection.
- Flow is not defined at corners of the polygon.

This is a dynamical system on the unit tangent bundle of Q,

$$
x_{Q}:=Q \times S^{1} / \sim
$$

and we let F_{Q}^{t} denote the straight line flow on X_{Q}. F_{Q}^{t} has a natural 3 dimension volume \mathbf{m}_{Q}.
Theorem
(C-Forni) There exists a polygon Q so that the flow on X_{Q} is weakly mixing with respect to \mathbf{m}_{Q}.

This is a dynamical system on the unit tangent bundle of Q,

$$
x_{Q}:=Q \times S^{1} / \sim
$$

and we let F_{Q}^{t} denote the straight line flow on X_{Q}. F_{Q}^{t} has a natural 3 dimension volume \mathbf{m}_{Q}.
Theorem
(C-Forni) There exists a polygon Q so that the flow on X_{Q} is weakly mixing with respect to \mathbf{m}_{Q}.
This strengthens,
Theorem
(Kerckhoff-Masur-Smillie '86) There exists a polygon Q so that the flow on X_{Q} is ergodic with respect to \mathbf{m}_{Q}.

What else is known?

1. F_{Q}^{t} has topological entropy 0 (Katok).

What else is known?

1. F_{Q}^{t} has topological entropy 0 (Katok).
2. F_{Q}^{t} has at most a countable number of families of homotopic periodic orbits (Boldrighini-Keane-Marchetti).

What dont we know?

1. Is there a Q so that F_{Q}^{t} is mixing?

What dont we know?

1. Is there a Q so that F_{Q}^{t} is mixing?
2. Is F_{Q}^{t} ergodic iff Q has at least one angle that is not a rational multiple of π ?

What dont we know?

1. Is there a Q so that F_{Q}^{t} is mixing?
2. Is F_{Q}^{t} ergodic iff Q has at least one angle that is not a rational multiple of π ?
3. Does every polygon Q have a periodic orbit?

What dont we know?

1. Is there a Q so that F_{Q}^{t} is mixing?
2. Is F_{Q}^{t} ergodic iff Q has at least one angle that is not a rational multiple of π ?
3. Does every polygon Q have a periodic orbit? -Yes if Q has all angles rational multiples of π.

What dont we know?

1. Is there a Q so that F_{Q}^{t} is mixing?
2. Is F_{Q}^{t} ergodic iff Q has at least one angle that is not a rational multiple of π ?
3. Does every polygon Q have a periodic orbit?
-Yes if Q has all angles rational multiples of π. These are called rational polygons.
-Yes for triangles with angles of at most 112.3 degrees
(Tokarsky-Garber-Marinov-Moore)

- improving on less than 100 degrees by Schwartz

What dont we know?

1. Is there a Q so that F_{Q}^{t} is mixing?
2. Is F_{Q}^{t} ergodic iff Q has at least one angle that is not a rational multiple of π ?
3. Does every polygon Q have a periodic orbit?
-Yes if Q has all angles rational multiples of π. These are called rational polygons.
-Yes for triangles with angles of at most 112.3 degrees (Tokarsky-Garber-Marinov-Moore)

- improving on less than 100 degrees by Schwartz

4. Is there a Q so that F_{Q}^{t} is minimal?

What dont we know?

1. Is there a Q so that F_{Q}^{t} is mixing?
2. Is F_{Q}^{t} ergodic iff Q has at least one angle that is not a rational multiple of π ?
3. Does every polygon Q have a periodic orbit? -Yes if Q has all angles rational multiples of π. These are called rational polygons.
-Yes for triangles with angles of at most 112.3 degrees (Tokarsky-Garber-Marinov-Moore)

- improving on less than 100 degrees by Schwartz

4. Is there a Q so that F_{Q}^{t} is minimal? Is there a Q so that F_{Q}^{t} is topologically mixing?

Rational polygons

Rational polygons are a special situation.

Rational polygons

Rational polygons are a special situation.
The group of reflections about the lines through the origin parallel to the sides is a finite group, G_{Q}.

Rational polygons

Rational polygons are a special situation.
The group of reflections about the lines through the origin parallel to the sides is a finite group, G_{Q}. For each $\theta, Q \times G_{Q} \theta$ is an F_{Q}^{t} invariant surface, S_{θ}.

Rational polygons

Rational polygons are a special situation.
The group of reflections about the lines through the origin parallel to the sides is a finite group, G_{Q}. For each $\theta, Q \times G_{Q} \theta$ is an F_{Q}^{t} invariant surface, $S_{\theta} . X_{Q}$ is foliated by F_{Q}^{t} invariant surfaces. So, when Q is rational F_{Q}^{t} is never ergodic because of these invariant.

Rational polygons

Rational polygons are a special situation.
The group of reflections about the lines through the origin parallel to the sides is a finite group, G_{Q}. For each $\theta, Q \times G_{Q} \theta$ is an F_{Q}^{t} invariant surface, $S_{\theta} . X_{Q}$ is foliated by F_{Q}^{t} invariant surfaces. So, when Q is rational F_{Q}^{t} is never ergodic because of these invariant.

Theorem
(Kerckhoff-Masur-Smillie) For every rational polygon Q, for almost every invariant surface $S_{\theta} \subset X_{Q}, F_{Q}^{t}$ is ergodic with respect to the (2-dimensional) Lebesgue measure on $S_{\theta} \subset X_{Q}$.
We denote this measure λ_{θ}.

A word on the proof of Kerckhoff-Masur-Smillie's Theorem

Let $\operatorname{Lip}\left(X_{Q}\right)$ be the set of 1-Lipschitz functions on X_{Q}.
Lemma
F_{Q}^{t} is ergodic iff for all $f \in \operatorname{Lip}\left(X_{Q}\right)$ we have that there exists
$T_{i} \rightarrow \infty$ so that

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \int_{X_{Q}}\left(\left|\frac{1}{T_{i}} \int_{0}^{T_{i}} f\left(F^{t}(\theta, x)\right) d t-\int_{X_{Q}} f d \mathbf{m}_{Q}\right|\right) d \mathbf{m}_{Q}=0 \tag{1}
\end{equation*}
$$

A word on the proof of Kerckhoff-Masur-Smillie's Theorem

Proposition

For all $\epsilon>0$ if Q satisfies that for all $f \in \operatorname{Lip}\left(X_{Q}\right)$ there exists a T so that

$$
\int_{X_{Q}}\left(\left|\frac{1}{T} \int_{0}^{T} f\left(F_{Q}^{t}(\theta, x)\right) d t-\int f d \mathbf{m}_{Q}\right|\right) d \mathbf{m}_{Q}<\epsilon
$$

then the set of Q^{\prime} so that for all $f \in \operatorname{Lip}\left(X\left(Q^{\prime}\right)\right)$ there exists T so that

$$
\int_{X_{Q^{\prime}}}\left(\left|\frac{1}{T} \int_{0}^{T} f\left(F_{Q^{\prime}}^{t}(\theta, x)\right) d t-\int f d \mathbf{m}_{Q^{\prime}}\right|\right) d \mathbf{m}_{Q^{\prime}}<2 \epsilon
$$

contains an open neighborhood of Q.

A word on the proof of Kerckhoff-Masur-Smillie's Theorem

Proposition

For all $\epsilon>0$ if Q satisfies that for all $f \in \operatorname{Lip}\left(X_{Q}\right)$ there exists a T so that

$$
\int_{X_{Q}}\left(\left|\frac{1}{T} \int_{0}^{T} f\left(F_{Q}^{t}(\theta, x)\right) d t-\int f d \mathbf{m}_{Q}\right|\right) d \mathbf{m}_{Q}<\epsilon
$$

then the set of Q^{\prime} so that for all $f \in \operatorname{Lip}\left(X\left(Q^{\prime}\right)\right)$ there exists T so that

$$
\int_{X_{Q^{\prime}}}\left(\left|\frac{1}{T} \int_{0}^{T} f\left(F_{Q^{\prime}}^{t}(\theta, x)\right) d t-\int f d \mathbf{m}_{Q^{\prime}}\right|\right) d \mathbf{m}_{Q^{\prime}}<2 \epsilon
$$

contains an open neighborhood of Q.
By the ergodicity result of Kerckhoff-Masur-Smillie this set is dense for each fixed ϵ.

If Q is rational, for almost every θ, for every $f \in \operatorname{Lip}\left(X_{Q}\right)$

$$
\lim _{T \rightarrow \infty} \int_{S_{\theta}}\left(\left|\frac{1}{T} \int_{0}^{T} f\left(F^{t}(\theta, x)\right) d t-\int_{S_{\theta}} f d \lambda_{\theta}\right|\right) d \lambda_{\theta}=0
$$

If Q is rational, for almost every θ, for every $f \in \operatorname{Lip}\left(X_{Q}\right)$

$$
\lim _{T \rightarrow \infty} \int_{S_{\theta}}\left(\left|\frac{1}{T} \int_{0}^{T} f\left(F^{t}(\theta, x)\right) d t-\int_{S_{\theta}} f d \lambda_{\theta}\right|\right) d \lambda_{\theta}=0
$$

If G_{Q} contains a small rotation, for all $f \in \operatorname{Lip}\left(X_{Q}\right)$ we have

$$
\left|\int_{X_{Q}} f d \mathbf{m}_{Q}-\int_{S_{\theta}} f d \lambda_{\theta}\right|
$$

is small (for all θ).

If Q is rational, for almost every θ, for every $f \in \operatorname{Lip}\left(X_{Q}\right)$

$$
\lim _{T \rightarrow \infty} \int_{S_{\theta}}\left(\left|\frac{1}{T} \int_{0}^{T} f\left(F^{t}(\theta, x)\right) d t-\int_{S_{\theta}} f d \lambda_{\theta}\right|\right) d \lambda_{\theta}=0
$$

If G_{Q} contains a small rotation, for all $f \in \operatorname{Lip}\left(X_{Q}\right)$ we have

$$
\left|\int_{X_{Q}} f d \mathbf{m}_{Q}-\int_{S_{\theta}} f d \lambda_{\theta}\right|
$$

is small (for all θ).
By the Baire Category Theorem we have that a dense G_{δ} subset of the space of polygons satisfies (??).

A word on the proof of weak mixing

Weak mixing of F_{Q}^{t} is equivalent to the ergodicity of $\left(F_{Q}^{t} \times F_{Q}^{t}\right)$.

A word on the proof of weak mixing

Weak mixing of F_{Q}^{t} is equivalent to the ergodicity of $\left(F_{Q}^{t} \times F_{Q}^{t}\right)$. So our proof is similar to Kerckhoff-Masur-Smillie's proof:

A word on the proof of weak mixing

Weak mixing of F_{Q}^{t} is equivalent to the ergodicity of $\left(F_{Q}^{t} \times F_{Q}^{t}\right)$. So our proof is similar to Kerckhoff-Masur-Smillie's proof: Replace $\operatorname{Lip}\left(X_{Q}\right)$ with $\operatorname{Lip}\left(X_{Q} \times X_{Q}\right)$.

A word on the proof of weak mixing

Weak mixing of F_{Q}^{t} is equivalent to the ergodicity of $\left(F_{Q}^{t} \times F_{Q}^{t}\right)$. So our proof is similar to Kerckhoff-Masur-Smillie's proof: Replace $\operatorname{Lip}\left(X_{Q}\right)$ with $\operatorname{Lip}\left(X_{Q} \times X_{Q}\right)$.
Replace the ergodicity of F_{Q}^{t} restricted to a.e. S_{θ} when Q is rational by the ergodicity of $F_{Q}^{t} \times F_{Q}^{t}$ restricted to a.e. $S_{\theta} \times S_{\phi}$ when Q is rational.

Theorem
(C-Forni) For every rational Q, for almost every (θ, ϕ) we have that $F_{Q}^{t} \times F_{Q}^{t}$ is $\lambda_{\theta} \times \lambda_{\phi}$ ergodic.

Reflection

Figure: Photo Credit: Evelyn Lamb

A translation surface

$S L(2, \mathbb{R})$ action

$S L(2, \mathbb{R})$ acts on translation by acting on the charts.

Figure: $\left(\begin{array}{cc}2 & 0 \\ 0 & \frac{1}{2}\end{array}\right)$ applied to a translation surface

$$
\text { Let } g_{t}=\left(\begin{array}{cc}
e^{t} & 0 \\
0 & e^{-t}
\end{array}\right) \text { and } r_{\theta}=\left(\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right) \text {. }
$$

Theorem
(C-Forni)Let M be a translation surface and F_{θ}^{t} denote the flow in direction θ. For a.e. $\theta, \phi, F_{\theta}^{t} \times F_{\phi}^{t}$ is λ_{M}^{2} ergodic.

Theorem
(C-Forni)Let M be a translation surface and F_{θ}^{t} denote the flow in direction θ. For a.e. $\theta, \phi, F_{\theta}^{t} \times F_{\phi}^{t}$ is λ_{M}^{2} ergodic.
We show that for any $\alpha \in \mathbb{R} \backslash\{0\}$ we have
$\lambda_{S^{1}}\left(\left\{\theta: \alpha\right.\right.$ is an eigenvalue for $\left.\left.F_{\theta}^{t}\right\}\right)=0$.

Theorem
(C-Forni)Let M be a translation surface and F_{θ}^{t} denote the flow in direction θ. For a.e. $\theta, \phi, F_{\theta}^{t} \times F_{\phi}^{t}$ is λ_{M}^{2} ergodic.
We show that for any $\alpha \in \mathbb{R} \backslash\{0\}$ we have

$$
\lambda_{S^{1}}\left(\left\{\theta: \alpha \text { is an eigenvalue for } F_{\theta}^{t}\right\}\right)=0 .
$$

Eigenvalue equation: $f\left(F_{\theta}^{t} x\right)=e^{2 \pi i t \alpha} f(x)$.

Theorem
(C-Forni)Let M be a translation surface and F_{θ}^{t} denote the flow in direction θ. For a.e. $\theta, \phi, F_{\theta}^{t} \times F_{\phi}^{t}$ is λ_{M}^{2} ergodic.
We show that for any $\alpha \in \mathbb{R} \backslash\{0\}$ we have

$$
\lambda_{S^{1}}\left(\left\{\theta: \alpha \text { is an eigenvalue for } F_{\theta}^{t}\right\}\right)=0 .
$$

Eigenvalue equation: $f\left(F_{\theta}^{t} x\right)=e^{2 \pi i t \alpha} f(x)$.
Is it uniquely ergodic?

Theorem
(C-Forni)Let M be a translation surface and F_{θ}^{t} denote the flow in direction θ. For a.e. $\theta, \phi, F_{\theta}^{t} \times F_{\phi}^{t}$ is λ_{M}^{2} ergodic.
We show that for any $\alpha \in \mathbb{R} \backslash\{0\}$ we have

$$
\lambda_{S^{1}}\left(\left\{\theta: \alpha \text { is an eigenvalue for } F_{\theta}^{t}\right\}\right)=0 .
$$

Eigenvalue equation: $f\left(F_{\theta}^{t} x\right)=e^{2 \pi i t \alpha} f(x)$.
Is it uniquely ergodic?
Hubert and I showed that almost surely it is with respect to any $S L(2, \mathbb{R})$ invariant measure.

Transversals for translation surfaces

Veech Criterion: continuous case

If α is a continuous eigenvalue of F^{t}, J_{i} are sequence of transversals so that $\operatorname{diam}\left(J_{\ell}\right) \rightarrow 0$ and \vec{r}_{i} are the sequence of return time vectors to J_{i} then

$$
\alpha \vec{r}_{i} \rightarrow \overrightarrow{0}\left(\bmod \mathbb{Z}^{d}\right)
$$

Veech Criterion: continuous case

If α is a continuous eigenvalue of F^{t}, J_{i} are sequence of transversals so that $\operatorname{diam}\left(J_{\ell}\right) \rightarrow 0$ and \vec{r}_{i} are the sequence of return time vectors to J_{i} then

$$
\alpha \vec{r}_{i} \rightarrow \overrightarrow{0}\left(\bmod \mathbb{Z}^{d}\right)
$$

Indeed $f\left(F^{t} x\right)=e^{2 \pi i t \alpha} f(x)$ and $\lim _{\ell \rightarrow \infty} \sup _{x, y \in J_{\ell}}|f(x)-f(y)|=0$.

Veech Criterion: continuous case

If α is a continuous eigenvalue of F^{t}, J_{i} are sequence of transversals so that $\operatorname{diam}\left(J_{\ell}\right) \rightarrow 0$ and \vec{r}_{i} are the sequence of return time vectors to J_{i} then

$$
\alpha \vec{r}_{i} \rightarrow \overrightarrow{0}\left(\bmod \mathbb{Z}^{d}\right)
$$

Indeed $f\left(F^{t} x\right)=e^{2 \pi i t \alpha} f(x)$ and $\lim _{\ell \rightarrow \infty} \sup _{x, y \in J_{\ell}}|f(x)-f(y)|=0$.
So if $x, F^{t} x \in J_{\ell}$ then $e^{2 \pi i \alpha t} \sim 1$.

Veech Criterion

If α is an eigenvalue of F^{t}, J_{i} are a sequence of transversals so that \vec{r}_{i} are the sequence of return time vectors to J_{i},

Veech Criterion

If α is an eigenvalue of F^{t}, J_{i} are a sequence of transversals so that \vec{r}_{i} are the sequence of return time vectors to J_{i}, and there exists $c>0$ so that

- F^{s} is continuous on J_{i} for all $0 \leq s<\frac{c}{\left|j_{i}\right|}$

Veech Criterion

If α is an eigenvalue of F^{t}, J_{i} are a sequence of transversals so that \vec{r}_{i} are the sequence of return time vectors to J_{i}, and there exists $c>0$ so that

- F^{s} is continuous on J_{i} for all $0 \leq s<\frac{c}{\left|j_{i}\right|}$
- the level sets of \vec{r}_{i} have length at least $c\left|J_{i}\right|$

Veech Criterion

If α is an eigenvalue of F^{t}, J_{i} are a sequence of transversals so that \vec{r}_{i} are the sequence of return time vectors to J_{i}, and there exists $c>0$ so that

- F^{s} is continuous on J_{i} for all $0 \leq s<\frac{c}{\left|j_{i}\right|}$
- the level sets of \vec{r}_{i} have length at least $c\left|J_{i}\right|$ then

$$
\alpha \vec{r}_{i} \rightarrow \overrightarrow{0}\left(\bmod \mathbb{Z}^{d}\right)
$$

Pictures for a translation surface

Pictures for a translation surface

Pictures for a translation surface

Renormalization

Veech criterion final form

Transversals are given by a cocycle $R V: \mathbb{R} \times \mathcal{H} \rightarrow S L(d, \mathbb{Z})$.
That is, a transversal on Y of size roughly $\frac{1}{L}$ will have its return time vector given by $R V(\log (L), Y) \vec{r}_{1}$.

Proposition

(Veech Criterion slight lie) If the exists a compact set $\mathcal{K} \subset \mathcal{H}$ and $\epsilon>0$ so that for arbitrarilly large L we have $\left\|\alpha R V(\log (L), Y) \vec{r}_{1}\right\|_{\mathbb{Z}^{d}}>\epsilon$ and $g_{\log (L)} Y \in \mathcal{K}$ then α is not an eigenvalue for F^{t}.

Veech criterion final form

Transversals are given by a cocycle $R V: \mathbb{R} \times \mathcal{H} \rightarrow S L(d, \mathbb{Z})$.
That is, a transversal on Y of size roughly $\frac{1}{L}$ will have its return time vector given by $R V(\log (L), Y) \vec{r}_{1}$.

Proposition

(Veech Criterion slight lie) If the exists a compact set $\mathcal{K} \subset \mathcal{H}$ and $\epsilon>0$ so that for arbitrarilly large L we have $\left\|\alpha R V(\log (L), Y) \vec{r}_{1}\right\|_{\mathbb{Z}^{d}}>\epsilon$ and $g_{\log (L)} Y \in \mathcal{K}$ then α is not an eigenvalue for F^{t}.
Really there exists $s:=s_{\mathcal{K}}$ and need $\left(\begin{array}{cc}s L & 0 \\ 0 & \frac{1}{s L}\end{array}\right) Y \in \mathcal{K}$ and $\left(\begin{array}{cc}\frac{L}{s} & 0 \\ 0 & \frac{s}{L}\end{array}\right) Y \in \mathcal{K}$ as well.

Proof (up to some lies)

To use the Veech criterion, we show that for any fixed $\vec{v} \neq 0$ we have that for most $\theta,\left\|R V\left(t, r_{\theta} Y\right) \vec{v}\right\|$ grows exponentially quickly in t.

Proof (up to some lies)

To use the Veech criterion, we show that for any fixed $\vec{v} \neq 0$ we have that for most $\theta,\left\|R V\left(t, r_{\theta} Y\right) \vec{v}\right\|$ grows exponentially quickly in t.
In fact there exists $\sigma, \rho>0$ so that

$$
\begin{aligned}
\lambda\left(\left\{\theta: \exists t_{\theta}<\log (N)\right.\right. \text { so that } & \left\|R V\left(t_{\theta}, r_{\theta} Y\right) \vec{v}\right\| \\
& \left.\left.>N^{\sigma}\|v\| \text { and } g_{t_{\theta}} r_{\theta} Y \in \mathcal{K}\right\}\right)<N^{-\rho} .
\end{aligned}
$$

$$
\vec{v}=\alpha \vec{r}_{k}-\vec{n} .
$$

Iterating this for $N_{1}=\frac{1}{\|\vec{v}\|}, \quad N_{2}=\frac{1}{\left\|R V\left(t_{\theta}, r_{\theta} Y\right) \vec{v}\right\|}, \ldots$ we obtain Veech's criterion.

Proof (up to some lies)

To use the Veech criterion, we show that for any fixed $\vec{v} \neq 0$ we have that for most $\theta,\left\|R V\left(t, r_{\theta} Y\right) \vec{v}\right\|$ grows exponentially quickly in t.
In fact there exists $\sigma, \rho>0$ so that

$$
\begin{aligned}
\lambda\left(\left\{\theta: \exists t_{\theta}<\log (N)\right.\right. \text { so that } & \left\|R V\left(t_{\theta}, r_{\theta} Y\right) \vec{v}\right\| \\
> & \left.\left.N^{\sigma}\|v\| \text { and } g_{t_{\theta}} r_{\theta} Y \in \mathcal{K}\right\}\right)<N^{-\rho} .
\end{aligned}
$$

$$
\vec{v}=\alpha \vec{r}_{k}-\vec{n} .
$$

Proof (up to some lies)

To use the Veech criterion, we show that for any fixed $\vec{v} \neq 0$ we have that for most $\theta,\left\|R V\left(t, r_{\theta} Y\right) \vec{v}\right\|$ grows exponentially quickly in t.
In fact there exists $\sigma, \rho>0$ so that

$$
\begin{aligned}
\lambda\left(\left\{\theta: \exists t_{\theta}<\log (N)\right.\right. \text { so that } & \left\|R V\left(t_{\theta}, r_{\theta} Y\right) \vec{v}\right\| \\
& \left.\left.>N^{\sigma}\|v\| \text { and } g_{t_{\theta}} r_{\theta} Y \in \mathcal{K}\right\}\right)<N^{-\rho} .
\end{aligned}
$$

$$
\vec{v}=\alpha \vec{r}_{k}-\vec{n} .
$$

Iterating this for $N_{1}=\frac{1}{\|\vec{v}\|}, \quad N_{2}=\frac{1}{\left\|R V\left(t_{\theta}, r_{\theta} Y\right) \vec{v}\right\|}, \ldots$ we obtain Veech's criterion.

Proof of large deviations estimate

Proposition

(C-Eskin Lie) For any $\epsilon>0$ there exists L and U an open set with $\mu_{Y}(U)>1-\epsilon$ such that if $Y \in U$ and \vec{v} is any vector then for all but an ϵ measure set of θ we have $\left(\lambda_{1}-\epsilon\right)^{L}<\left|R V\left(g_{L}, r_{\theta} Y\right) \vec{v}\right|<\left(\lambda_{1}+\epsilon\right)^{L}$.

Proof of large deviations estimate

Proposition

(C-Eskin Lie) For any $\epsilon>0$ there exists L and U an open set with $\mu_{Y}(U)>1-\epsilon$ such that if $Y \in U$ and \vec{v} is any vector then for all but an ϵ measure set of θ we have

$$
\left(\lambda_{1}-\epsilon\right)^{L}<\left|R V\left(g_{L}, r_{\theta} Y\right) \vec{v}\right|<\left(\lambda_{1}+\epsilon\right)^{L}
$$

Because g_{t} expands circles, one can show that the conditional probability that $\frac{\left|R V\left(g_{t+L}, r_{\theta} Y\right) \vec{v}\right|}{\left|R V\left(g_{t}, r_{\theta}\right) \vec{v}\right|}<\left(\lambda_{1}-\epsilon\right)^{L}$ given $R V\left(g_{t}, r_{\theta} Y\right)$ and that $g_{t} r_{\theta} Y \in U$ is at most $C \epsilon$.

Proof of large deviations estimate

Proposition

(C-Eskin Lie) For any $\epsilon>0$ there exists L and U an open set with $\mu_{Y}(U)>1-\epsilon$ such that if $Y \in U$ and \vec{v} is any vector then for all but an ϵ measure set of θ we have

$$
\left(\lambda_{1}-\epsilon\right)^{L}<\left|R V\left(g_{L}, r_{\theta} Y\right) \vec{v}\right|<\left(\lambda_{1}+\epsilon\right)^{L}
$$

Because g_{t} expands circles, one can show that the conditional probability that $\frac{\left|R V\left(g_{t+L}, r_{\theta} Y\right) \vec{v}\right|}{\left|R V\left(g_{t}, r_{\theta}\right) \vec{v}\right|}<\left(\lambda_{1}-\epsilon\right)^{L}$ given $R V\left(g_{t}, r_{\theta} Y\right)$ and that $g_{t} r_{\theta} Y \in U$ is at most $C \epsilon$.
If the measure of θ so that

$$
\sum_{i=0}^{M} \chi_{U}\left(g_{L i} r_{\theta} Y\right)>M-C M \epsilon
$$

we have the key estimate.

Proof of large deviations estimate

To prove this result we results of Eskin-Mirzakhani-Mohammadi:
Theorem
(Eskin-Mirzakhani-Mohammadi) We say Y is T, ϵ bad if

$$
\left|\frac{1}{T \sigma} \int_{0}^{T} \int_{0}^{\sigma} \chi_{U}\left(g_{t} r_{\theta} Y\right) d \theta d t-\mu_{Y}(U)\right|>\epsilon
$$

The T, ϵ bad set is contained in the union of neighborhoods of finitely many affine $\left(S L_{2}(\mathbb{R})\right.$-invariant) submanifolds. Moreover for fixed ϵ, σ the μ_{Y}-measure of these neighborhoods goes to zero as T goes to infinity.

Theorem

(Eskin-Mirzakhani-Mohammadi) Let \mathcal{M} be any affine submanifold contained in $\operatorname{supp}(\mu)$. Then there exists an SO_{2} invariant function f, constants $c, b, \sigma, t_{0} \in \mathbb{R}, c<1$ such that

1. $f(x)=\infty$ iff $x \in \mathcal{M}$. Also f is bounded on compact subsets of $\mathcal{H}_{1}(\alpha) \backslash \mathcal{M}$. Also $\overline{\{x: f(x) \leq N\}}$ is compact for any N.
2. $\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(g_{t} r_{\theta} x\right) d \theta \leq c f(x)+b$ for all $t>t_{0}$.
3. $\sigma^{-1} f(x) \leq f\left(g_{s} x\right) \leq \sigma f(x)$ for all $s \in[-1,1]$.

Theorem

(Eskin-Mirzakhani-Mohammadi) Let \mathcal{M} be any affine submanifold contained in $\operatorname{supp}(\mu)$. Then there exists an SO_{2} invariant function f, constants $c, b, \sigma, t_{0} \in \mathbb{R}, c<1$ such that

1. $f(x)=\infty$ iff $x \in \mathcal{M}$. Also f is bounded on compact subsets of $\mathcal{H}_{1}(\alpha) \backslash \mathcal{M}$. Also $\overline{\{x: f(x) \leq N\}}$ is compact for any N.
2. $\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(g_{t} r_{\theta} x\right) d \theta \leq c f(x)+b$ for all $t>t_{0}$.
3. $\sigma^{-1} f(x) \leq f\left(g_{s} x\right) \leq \sigma f(x)$ for all $s \in[-1,1]$.

We now state an anachronistic corollary:
Corollary
(Athreya) For almost every θ and all large enough T the set of i such that $g_{i T} r_{\theta} Y$ is in the T, ϵ bad set has upper density at most ϵ.

Using this corollary, our first theorem of
Eskin-Mirzakhani-Mohammadi and the expansion of circles by g_{t} we obtain that for all by an exponentially small in M set of θ, there exists C so that

$$
\sum_{i=0}^{M} \chi u\left(g_{L i} r_{\theta} Y\right)>M-C M \epsilon
$$

Using this corollary, our first theorem of
Eskin-Mirzakhani-Mohammadi and the expansion of circles by g_{t} we obtain that for all by an exponentially small in M set of θ, there exists C so that

$$
\sum_{i=0}^{M} \chi u\left(g_{L i} r_{\theta} Y\right)>M-C M \epsilon
$$

C is independent of ϵ.

