There exists a weakly mixing billiard in a polygon

Jon Chaika

University of Utah

June 11, 2020

Joint with Giovanni Fornia + () + () + () + ()

Rules:

Point mass in the polygon.

Rules:

- Point mass in the polygon.
- Travels in a straight line until it hits a side.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Rules:

- Point mass in the polygon.
- Travels in a straight line until it hits a side.
- After hitting the side, angle of incidence=angle of reflection.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Rules:

- Point mass in the polygon.
- Travels in a straight line until it hits a side.
- After hitting the side, angle of incidence=angle of reflection.

Rules:

- Point mass in the polygon.
- Travels in a straight line until it hits a side.
- After hitting the side, angle of incidence=angle of reflection.

Rules:

- Point mass in the polygon.
- Travels in a straight line until it hits a side.
- After hitting the side, angle of incidence=angle of reflection.

Rules:

- Point mass in the polygon.
- Travels in a straight line until it hits a side.
- After hitting the side, angle of incidence=angle of reflection.

Rules:

- Point mass in the polygon.
- Travels in a straight line until it hits a side.
- After hitting the side, angle of incidence=angle of reflection.

Rules:

- Point mass in the polygon.
- Travels in a straight line until it hits a side.
- After hitting the side, angle of incidence=angle of reflection.

Rules:

- Point mass in the polygon.
- Travels in a straight line until it hits a side.
- After hitting the side, angle of incidence=angle of reflection.

Rules:

- Point mass in the polygon.
- Travels in a straight line until it hits a side.
- After hitting the side, angle of incidence=angle of reflection.

This is a dynamical system on the unit tangent bundle of Q,

$$X_Q := Q \times S^1 / \sim$$

and we let F_Q^t denote the straight line flow on X_Q . F_Q^t has a natural 3 dimension volume \mathbf{m}_Q .

Theorem

(C-Forni) There exists a polygon Q so that the flow on X_Q is weakly mixing with respect to \mathbf{m}_Q .

This is a dynamical system on the unit tangent bundle of Q,

$$X_Q := Q \times S^1 / \sim$$

and we let F_Q^t denote the straight line flow on X_Q . F_Q^t has a natural 3 dimension volume \mathbf{m}_Q .

Theorem

(C-Forni) There exists a polygon Q so that the flow on X_Q is weakly mixing with respect to \mathbf{m}_Q .

This strengthens,

Theorem

(Kerckhoff-Masur-Smillie '86) There exists a polygon Q so that the flow on X_Q is ergodic with respect to \mathbf{m}_Q .

What else is known?

1. F_Q^t has topological entropy 0 (Katok).

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

What else is known?

- 1. F_Q^t has topological entropy 0 (Katok).
- 2. F_Q^t has at most a countable number of families of homotopic periodic orbits (Boldrighini-Keane-Marchetti).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1. Is there a Q so that F_Q^t is mixing?

- 1. Is there a Q so that F_Q^t is mixing?
- 2. Is F_Q^t ergodic iff Q has at least one angle that is not a rational multiple of π ?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- 1. Is there a Q so that F_Q^t is mixing?
- 2. Is F_Q^t ergodic iff Q has at least one angle that is not a rational multiple of π ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

3. Does every polygon Q have a periodic orbit?

- 1. Is there a Q so that F_Q^t is mixing?
- 2. Is F_Q^t ergodic iff Q has at least one angle that is not a rational multiple of π ?

Does every polygon Q have a periodic orbit?
 Yes if Q has all angles rational multiples of π.

- 1. Is there a Q so that F_Q^t is mixing?
- 2. Is F_Q^t ergodic iff Q has at least one angle that is not a rational multiple of π ?
- Does every polygon Q have a periodic orbit?
 Yes if Q has all angles rational multiples of π. These are called *rational polygons*.
 - -Yes for triangles with angles of at most 112.3 degrees (Tokarsky-Garber-Marinov-Moore)

- improving on less than 100 degrees by Schwartz

- 1. Is there a Q so that F_Q^t is mixing?
- 2. Is F_Q^t ergodic iff Q has at least one angle that is not a rational multiple of π ?
- Does every polygon Q have a periodic orbit?
 Yes if Q has all angles rational multiples of π. These are called *rational polygons*.
 - -Yes for triangles with angles of at most 112.3 degrees (Tokarsky-Garber-Marinov-Moore)

- improving on less than 100 degrees by Schwartz
- 4. Is there a Q so that F_Q^t is minimal?

- 1. Is there a Q so that F_Q^t is mixing?
- 2. Is F_Q^t ergodic iff Q has at least one angle that is not a rational multiple of π ?
- Does every polygon Q have a periodic orbit?
 Yes if Q has all angles rational multiples of π. These are called *rational polygons*.

-Yes for triangles with angles of at most 112.3 degrees (Tokarsky-Garber-Marinov-Moore)

- improving on less than 100 degrees by Schwartz

4. Is there a Q so that F_Q^t is minimal? Is there a Q so that F_Q^t is topologically mixing?

Rational polygons are a special situation.

(ロ)、(型)、(E)、(E)、 E) の(の)

Rational polygons are a special situation.

The group of reflections about the lines through the origin parallel to the sides is a finite group, G_Q .

・ロト・日本・モート モー うへぐ

Rational polygons are a special situation.

The group of reflections about the lines through the origin parallel to the sides is a finite group, G_Q . For each θ , $Q \times G_Q \theta$ is an F_Q^t invariant surface, S_{θ} .

Rational polygons are a special situation.

The group of reflections about the lines through the origin parallel to the sides is a finite group, G_Q . For each θ , $Q \times G_Q \theta$ is an F_Q^t invariant surface, S_{θ} . X_Q is foliated by F_Q^t invariant surfaces. So, when Q is rational F_Q^t is never ergodic because of these invariant.

Rational polygons are a special situation.

The group of reflections about the lines through the origin parallel to the sides is a finite group, G_Q . For each θ , $Q \times G_Q \theta$ is an F_Q^t invariant surface, S_{θ} . X_Q is foliated by F_Q^t invariant surfaces. So, when Q is rational F_Q^t is never ergodic because of these invariant.

Theorem

(Kerckhoff-Masur-Smillie) For every rational polygon Q, for almost every invariant surface $S_{\theta} \subset X_Q$, F_Q^t is ergodic with respect to the (2-dimensional) Lebesgue measure on $S_{\theta} \subset X_Q$.

We denote this measure λ_{θ} .

A word on the proof of Kerckhoff-Masur-Smillie's Theorem

Let $Lip(X_Q)$ be the set of 1-Lipschitz functions on X_Q .

Lemma

 F_Q^t is ergodic iff for all $f\in Lip(X_Q)$ we have that there exists $T_i\to\infty$ so that

$$\lim_{i\to\infty}\int_{X_Q}\Big(|\frac{1}{T_i}\int_0^{T_i}f(F^t(\theta,x))dt-\int_{X_Q}fd\mathbf{m}_Q|\Big)d\mathbf{m}_Q=0.$$
 (1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A word on the proof of Kerckhoff-Masur-Smillie's Theorem

Proposition

For all $\epsilon > 0$ if Q satisfies that for all $f \in Lip(X_Q)$ there exists a T so that

$$\int_{X_Q} \Big(|\frac{1}{T} \int_0^T f(F_Q^t(\theta, x)) dt - \int f d\mathbf{m}_Q| \Big) d\mathbf{m}_Q < \epsilon$$

then the set of Q' so that for all $f \in Lip(X(Q'))$ there exists T so that

$$\int_{X_{Q'}} \left(\left| \frac{1}{T} \int_0^T f(F_{Q'}^t(\theta, x)) dt - \int f d\mathbf{m}_{Q'} \right| \right) d\mathbf{m}_{Q'} < 2\epsilon$$

contains an open neighborhood of Q.

A word on the proof of Kerckhoff-Masur-Smillie's Theorem

Proposition

For all $\epsilon > 0$ if Q satisfies that for all $f \in Lip(X_Q)$ there exists a T so that

$$\int_{X_Q} \Big(|\frac{1}{T} \int_0^T f(F_Q^t(\theta, x)) dt - \int f d\mathbf{m}_Q| \Big) d\mathbf{m}_Q < \epsilon$$

then the set of Q' so that for all $f \in Lip(X(Q'))$ there exists T so that

$$\int_{X_{Q'}} \Big(|\frac{1}{T} \int_0^T f(F_{Q'}^t(\theta, x)) dt - \int f d\mathbf{m}_{Q'}| \Big) d\mathbf{m}_{Q'} < 2\epsilon$$

contains an open neighborhood of Q.

By the ergodicity result of Kerckhoff-Masur-Smillie this set is dense for each fixed ϵ .

If Q is rational, for almost every θ , for every $f \in Lip(X_Q)$

$$\lim_{T\to\infty}\int_{S_{\theta}}\Big(|\frac{1}{T}\int_{0}^{T}f(F^{t}(\theta,x))dt-\int_{S_{\theta}}fd\lambda_{\theta}|\Big)d\lambda_{\theta}=0.$$

If Q is rational, for almost every θ , for every $f \in Lip(X_Q)$

$$\lim_{T\to\infty}\int_{S_{\theta}}\Big(|\frac{1}{T}\int_{0}^{T}f(F^{t}(\theta,x))dt-\int_{S_{\theta}}fd\lambda_{\theta}|\Big)d\lambda_{\theta}=0.$$

If G_Q contains a small rotation, for all $f \in Lip(X_Q)$ we have

$$|\int_{X_Q} f d\mathbf{m}_Q - \int_{S_{\theta}} f d\lambda_{\theta}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

is small (for all θ).

If Q is rational, for almost every θ , for every $f \in Lip(X_Q)$

$$\lim_{T\to\infty}\int_{S_{\theta}}\Big(|\frac{1}{T}\int_{0}^{T}f(F^{t}(\theta,x))dt-\int_{S_{\theta}}fd\lambda_{\theta}|\Big)d\lambda_{\theta}=0.$$

If G_Q contains a small rotation, for all $f \in Lip(X_Q)$ we have

$$|\int_{X_Q} f d\mathbf{m}_Q - \int_{S_{\theta}} f d\lambda_{\theta}$$

is small (for all θ).

By the Baire Category Theorem we have that a dense G_{δ} subset of the space of polygons satisfies (??).

A word on the proof of weak mixing

Weak mixing of F_Q^t is equivalent to the ergodicity of $(F_Q^t \times F_Q^t)$.

A word on the proof of weak mixing

Weak mixing of F_Q^t is equivalent to the ergodicity of $(F_Q^t \times F_Q^t)$. So our proof is similar to Kerckhoff-Masur-Smillie's proof:
A word on the proof of weak mixing

Weak mixing of F_Q^t is equivalent to the ergodicity of $(F_Q^t \times F_Q^t)$. So our proof is similar to Kerckhoff-Masur-Smillie's proof: Replace $Lip(X_Q)$ with $Lip(X_Q \times X_Q)$.

A word on the proof of weak mixing

Weak mixing of F_Q^t is equivalent to the ergodicity of $(F_Q^t \times F_Q^t)$. So our proof is similar to Kerckhoff-Masur-Smillie's proof: Replace $Lip(X_Q)$ with $Lip(X_Q \times X_Q)$. Replace the ergodicity of F_Q^t restricted to a.e. S_{θ} when Q is rational by the ergodicity of $F_Q^t \times F_Q^t$ restricted to a.e. $S_{\theta} \times S_{\phi}$ when Q is rational.

Theorem

(C-Forni) For every rational Q, for almost every (θ, ϕ) we have that $F_Q^t \times F_Q^t$ is $\lambda_{\theta} \times \lambda_{\phi}$ ergodic.

Reflection

Figure: Photo Credit: Evelyn Lamb

A translation surface

$SL(2,\mathbb{R})$ action

 $SL(2,\mathbb{R})$ acts on translation by acting on the charts.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let
$$g_t = \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix}$$
 and $r_ heta = \begin{pmatrix} \cos(heta) & -\sin(heta) \\ \sin(heta) & \cos(heta) \end{pmatrix}$.

(C-Forni)Let M be a translation surface and F_{θ}^{t} denote the flow in direction θ . For a.e. $\theta, \phi, F_{\theta}^{t} \times F_{\phi}^{t}$ is λ_{M}^{2} ergodic.

(C-Forni)Let M be a translation surface and F_{θ}^{t} denote the flow in direction θ . For a.e. $\theta, \phi, F_{\theta}^{t} \times F_{\phi}^{t}$ is λ_{M}^{2} ergodic. We show that for any $\alpha \in \mathbb{R} \setminus \{0\}$ we have

 $\lambda_{S^1}(\{\theta : \alpha \text{ is an eigenvalue for } F^t_{\theta}\}) = 0.$

(C-Forni)Let M be a translation surface and F_{θ}^{t} denote the flow in direction θ . For a.e. $\theta, \phi, F_{\theta}^{t} \times F_{\phi}^{t}$ is λ_{M}^{2} ergodic. We show that for any $\alpha \in \mathbb{R} \setminus \{0\}$ we have

 $\lambda_{S^1}(\{\theta : \alpha \text{ is an eigenvalue for } F^t_{\theta}\}) = 0.$

Eigenvalue equation: $f(F_{\theta}^{t}x) = e^{2\pi i t \alpha} f(x)$.

(C-Forni)Let M be a translation surface and F_{θ}^{t} denote the flow in direction θ . For a.e. $\theta, \phi, F_{\theta}^{t} \times F_{\phi}^{t}$ is λ_{M}^{2} ergodic. We show that for any $\alpha \in \mathbb{R} \setminus \{0\}$ we have

 $\lambda_{S^1}(\{\theta : \alpha \text{ is an eigenvalue for } F^t_{\theta}\}) = 0.$

Eigenvalue equation: $f(F_{\theta}^{t}x) = e^{2\pi i t \alpha} f(x)$. Is it uniquely ergodic?

(C-Forni)Let M be a translation surface and F_{θ}^{t} denote the flow in direction θ . For a.e. $\theta, \phi, F_{\theta}^{t} \times F_{\phi}^{t}$ is λ_{M}^{2} ergodic. We show that for any $\alpha \in \mathbb{R} \setminus \{0\}$ we have

 $\lambda_{S^1}(\{\theta : \alpha \text{ is an eigenvalue for } F^t_{\theta}\}) = 0.$

Eigenvalue equation: $f(F_{\theta}^{t}x) = e^{2\pi i t \alpha} f(x)$. Is it uniquely ergodic? Hubert and I showed that almost surely it is with respect to any $SL(2, \mathbb{R})$ invariant measure.

<□> <圖> < E> < E> E のQ@

Veech Criterion: continuous case

If α is a continuous eigenvalue of F^t , J_i are sequence of transversals so that $diam(J_\ell) \rightarrow 0$ and $\vec{r_i}$ are the sequence of return time vectors to J_i then

$$\alpha \vec{r_i} \rightarrow \vec{0} \pmod{\mathbb{Z}^d}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Veech Criterion: continuous case

If α is a continuous eigenvalue of F^t , J_i are sequence of transversals so that $diam(J_\ell) \rightarrow 0$ and $\vec{r_i}$ are the sequence of return time vectors to J_i then

$$\alpha \vec{r_i} \rightarrow \vec{0} \pmod{\mathbb{Z}^d}.$$

Indeed $f(F^tx) = e^{2\pi i t\alpha} f(x)$ and $\lim_{\ell \to \infty} \sup_{x,y \in J_\ell} |f(x) - f(y)| = 0.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Veech Criterion: continuous case

If α is a continuous eigenvalue of F^t , J_i are sequence of transversals so that $diam(J_\ell) \rightarrow 0$ and $\vec{r_i}$ are the sequence of return time vectors to J_i then

$$\alpha \vec{r_i} \rightarrow \vec{0} \pmod{\mathbb{Z}^d}.$$

Indeed $f(F^t x) = e^{2\pi i t \alpha} f(x)$ and $\lim_{\ell \to \infty} \sup_{x,y \in J_\ell} |f(x) - f(y)| = 0$. So if $x, F^t x \in J_\ell$ then $e^{2\pi i \alpha t} \sim 1$.

If α is an eigenvalue of F^t , J_i are a sequence of transversals so that $\vec{r_i}$ are the sequence of return time vectors to J_i ,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Veech Criterion

If α is an eigenvalue of F^t , J_i are a sequence of transversals so that $\vec{r_i}$ are the sequence of return time vectors to J_i , and there exists c > 0 so that

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• F^s is continuous on J_i for all $0 \le s < \frac{c}{|J_i|}$

Veech Criterion

If α is an eigenvalue of F^t , J_i are a sequence of transversals so that $\vec{r_i}$ are the sequence of return time vectors to J_i , and there exists c > 0 so that

- F^s is continuous on J_i for all $0 \le s < \frac{c}{|J_i|}$
- the level sets of $\vec{r_i}$ have length at least $c|J_i|$

Veech Criterion

If α is an eigenvalue of F^t , J_i are a sequence of transversals so that $\vec{r_i}$ are the sequence of return time vectors to J_i , and there exists c > 0 so that

• F^s is continuous on J_i for all $0 \le s < \frac{c}{|J_i|}$

 \blacktriangleright the level sets of $\vec{r_i}$ have length at least $c|J_i|$

then

 $\alpha \vec{r_i} \rightarrow \vec{0} \pmod{\mathbb{Z}^d}.$

Pictures for a translation surface

Pictures for a translation surface

Pictures for a translation surface

Renormalization

▲□ > ▲圖 > ▲目 > ▲目 > → 目 - のへで

Veech criterion final form

Transversals are given by a cocycle

 $RV : \mathbb{R} \times \mathcal{H} \rightarrow SL(d,\mathbb{Z}).$

That is, a transversal on Y of size roughly $\frac{1}{L}$ will have its return time vector given by $RV(\log(L), Y)\vec{r_1}$.

Proposition

(Veech Criterion slight lie) If the exists a compact set $\mathcal{K} \subset \mathcal{H}$ and $\epsilon > 0$ so that for arbitrarilly large L we have $\|\alpha RV(\log(L), Y)\vec{r_1}\|_{\mathbb{Z}^d} > \epsilon$ and $g_{\log(L)}Y \in \mathcal{K}$ then α is not an eigenvalue for F^t .

Veech criterion final form

Transversals are given by a cocycle

 $RV: \mathbb{R} \times \mathcal{H} \rightarrow SL(d, \mathbb{Z}).$

That is, a transversal on Y of size roughly $\frac{1}{L}$ will have its return time vector given by $RV(\log(L), Y)\vec{r_1}$.

Proposition

(Veech Criterion slight lie) If the exists a compact set $\mathcal{K} \subset \mathcal{H}$ and $\epsilon > 0$ so that for arbitrarilly large L we have $\|\alpha RV(\log(L), Y)\vec{r_1}\|_{\mathbb{Z}^d} > \epsilon$ and $g_{\log(L)}Y \in \mathcal{K}$ then α is not an eigenvalue for F^t .

Really there exists $s := s_{\mathcal{K}}$ and need $\begin{pmatrix} sL & 0\\ 0 & \frac{1}{sL} \end{pmatrix} Y \in \mathcal{K}$ and $\begin{pmatrix} \frac{L}{s} & 0\\ 0 & \frac{s}{L} \end{pmatrix} Y \in \mathcal{K}$ as well.

Proof (up to some lies)

To use the Veech criterion, we show that for any fixed $\vec{v} \neq 0$ we have that for most θ , $||RV(t, r_{\theta}Y)\vec{v}||$ grows exponentially quickly in *t*.

Proof (up to some lies)

To use the Veech criterion, we show that for any fixed $\vec{v} \neq 0$ we have that for most θ , $||RV(t, r_{\theta}Y)\vec{v}||$ grows exponentially quickly in *t*.

In fact there exists $\sigma, \rho > 0$ so that

$$\begin{split} \lambda(\{\theta: \exists t_{\theta} < \log(\mathsf{N}) \text{ so that } \|\mathsf{R}\mathsf{V}(t_{\theta}, r_{\theta}Y)\vec{v}\| \\ > \mathsf{N}^{\sigma}\|v\| \text{ and } g_{t_{\theta}}r_{\theta}Y \in \mathcal{K}\}) < \mathsf{N}^{-\rho}. \end{split}$$

 $\vec{\mathbf{v}} = \alpha \vec{\mathbf{r}}_k - \vec{\mathbf{n}}.$

Iterating this for $N_1 = \frac{1}{\|\vec{v}\|}$, $N_2 = \frac{1}{\|RV(t_\theta, r_\theta Y)\vec{v}\|}$,... we obtain Veech's criterion.

Proof (up to some lies)

To use the Veech criterion, we show that for any fixed $\vec{v} \neq 0$ we have that for most θ , $||RV(t, r_{\theta}Y)\vec{v}||$ grows exponentially quickly in *t*.

In fact there exists $\sigma, \rho > 0$ so that

$$\begin{split} \lambda(\{\theta: \exists t_{\theta} < \log(\mathsf{N}) \text{ so that } \|\mathsf{R}\mathsf{V}(t_{\theta}, r_{\theta}\mathsf{Y})\vec{v}\| \\ > \mathsf{N}^{\sigma}\|v\| \text{ and } g_{t_{\theta}}r_{\theta}\mathsf{Y} \in \mathcal{K}\}) < \mathsf{N}^{-\rho}. \end{split}$$

 $\vec{\mathbf{v}} = \alpha \vec{\mathbf{r}}_k - \vec{\mathbf{n}}.$
Proof (up to some lies)

To use the Veech criterion, we show that for any fixed $\vec{v} \neq 0$ we have that for most θ , $||RV(t, r_{\theta}Y)\vec{v}||$ grows exponentially quickly in *t*.

In fact there exists $\sigma, \rho > 0$ so that

$$\begin{split} \lambda(\{\theta: \exists t_{\theta} < \log(\mathsf{N}) \text{ so that } \|\mathsf{R}\mathsf{V}(t_{\theta}, r_{\theta}Y)\vec{v}\| \\ > \mathsf{N}^{\sigma}\|v\| \text{ and } g_{t_{\theta}}r_{\theta}Y \in \mathcal{K}\}) < \mathsf{N}^{-\rho}. \end{split}$$

 $\vec{\mathbf{v}} = \alpha \vec{\mathbf{r}}_k - \vec{\mathbf{n}}.$

Iterating this for $N_1 = \frac{1}{\|\vec{v}\|}$, $N_2 = \frac{1}{\|RV(t_\theta, r_\theta Y)\vec{v}\|}$,... we obtain Veech's criterion.

Proposition

(C-Eskin Lie) For any $\epsilon > 0$ there exists L and U an open set with $\mu_{\mathbf{Y}}(U) > 1 - \epsilon$ such that if $\mathbf{Y} \in U$ and \vec{v} is any vector then for all but an ϵ measure set of θ we have $(\lambda_1 - \epsilon)^L < |RV(g_L, r_\theta Y)\vec{v}| < (\lambda_1 + \epsilon)^L$.

Proposition

(C-Eskin Lie) For any $\epsilon > 0$ there exists L and U an open set with $\mu_{\mathbf{Y}}(U) > 1 - \epsilon$ such that if $\mathbf{Y} \in U$ and \vec{v} is any vector then for all but an ϵ measure set of θ we have $(\lambda_1 - \epsilon)^L < |RV(\mathbf{g}_L, \mathbf{r}_{\theta}\mathbf{Y})\vec{v}| < (\lambda_1 + \epsilon)^L$.

Because g_t expands circles, one can show that the conditional probability that $\frac{|RV(g_{t+L},r_{\theta}Y)\vec{v}|}{|RV(g_t,r_{\theta})\vec{v}|} < (\lambda_1 - \epsilon)^L$ given $RV(g_t, r_{\theta}Y)$ and that $g_t r_{\theta}Y \in U$ is at most $C\epsilon$.

Proposition

(C-Eskin Lie) For any $\epsilon > 0$ there exists L and U an open set with $\mu_{\mathbf{Y}}(U) > 1 - \epsilon$ such that if $\mathbf{Y} \in U$ and \vec{v} is any vector then for all but an ϵ measure set of θ we have $(\lambda_1 - \epsilon)^L < |RV(g_L, r_{\theta}\mathbf{Y})\vec{v}| < (\lambda_1 + \epsilon)^L$.

Because g_t expands circles, one can show that the conditional probability that $\frac{|RV(g_{t+L}, r_{\theta} Y)\vec{v}|}{|RV(g_t, r_{\theta})\vec{v}|} < (\lambda_1 - \epsilon)^L$ given $RV(g_t, r_{\theta} Y)$ and that $g_t r_{\theta} Y \in U$ is at most $C\epsilon$. If the measure of θ so that

$$\sum_{i=0}^{M} \chi_U(g_{Li}r_\theta Y) > M - CM\epsilon$$

we have the key estimate.

To prove this result we results of Eskin-Mirzakhani-Mohammadi:

Theorem

(Eskin-Mirzakhani-Mohammadi) We say \mathbf{Y} is \mathbf{T}, ϵ bad if

$$\left|\frac{1}{T\sigma}\int_0^T\int_0^\sigma\chi_U(g_tr_\theta Y)d\theta dt-\mu_Y(U)\right|>\epsilon.$$

The T, ϵ bad set is contained in the union of neighborhoods of finitely many affine $(SL_2(\mathbb{R})\text{-invariant})$ submanifolds. Moreover for fixed ϵ, σ the μ_Y -measure of these neighborhoods goes to zero as T goes to infinity.

Theorem

(Eskin-Mirzakhani-Mohammadi) Let \mathcal{M} be any affine submanifold contained in supp(μ). Then there exists an SO₂ invariant function f, constants $c, b, \sigma, t_0 \in \mathbb{R}, c < 1$ such that

1. $f(x) = \infty$ iff $x \in M$. Also f is bounded on compact subsets of $\mathcal{H}_1(\alpha) \setminus M$. Also $\overline{\{x : f(x) \le N\}}$ is compact for any N.

(日) (同) (三) (三) (三) (○) (○)

- 2. $\frac{1}{2\pi} \int_0^{2\pi} f(g_t r_{\theta} x) d\theta \leq cf(x) + b$ for all $t > t_0$.
- 3. $\sigma^{-1}f(x) \leq f(g_s x) \leq \sigma f(x)$ for all $s \in [-1, 1]$.

Theorem

(Eskin-Mirzakhani-Mohammadi) Let \mathcal{M} be any affine submanifold contained in supp(μ). Then there exists an SO₂ invariant function f, constants $c, b, \sigma, t_0 \in \mathbb{R}, c < 1$ such that

1. $f(x) = \infty$ iff $x \in M$. Also f is bounded on compact subsets of $\mathcal{H}_1(\alpha) \setminus M$. Also $\overline{\{x : f(x) \le N\}}$ is compact for any N.

2.
$$\frac{1}{2\pi}\int_0^{2\pi} f(g_t r_{ heta} x) d heta \leq c f(x) + b$$
 for all $t > t_0$.

3.
$$\sigma^{-1}f(x) \leq f(g_s x) \leq \sigma f(x)$$
 for all $s \in [-1, 1]$.

We now state an anachronistic corollary:

Corollary

(Athreya) For almost every θ and all large enough T the set of i such that $g_{iT}r_{\theta}Y$ is in the T, ϵ bad set has upper density at most ϵ .

Using this corollary, our first theorem of Eskin-Mirzakhani-Mohammadi and the expansion of circles by g_t we obtain that for all by an exponentially small in M set of θ , there exists C so that

$$\sum_{i=0}^{M} \chi_U(g_{Li}r_\theta Y) > M - CM\epsilon$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Using this corollary, our first theorem of Eskin-Mirzakhani-Mohammadi and the expansion of circles by g_t we obtain that for all by an exponentially small in M set of θ , there exists C so that

$$\sum_{i=0}^{M} \chi_U(g_{Li}r_\theta Y) > M - CM\epsilon$$

C is independent of ϵ .