Almost-Prime Times in Horospherical Flows West Coast Dynamics Seminar

Taylor McAdam

Yale University

May 28, 2020

Taylor McAdam Almost-Prime Times in Horospherical Flows

Homogeneous Dynamics

- ► *G*, a Lie group
- $\Gamma \leq G$, a lattice (discrete, finite covolume subgroup)
- $X = \Gamma \setminus G$, space of interest
- $H \leq G$, a closed subgroup
- Dynamics: $H \curvearrowright X$ by right translations

Possible questions:

- Given $x \in X$, what does the orbit xH look like?
- What does a *typical* orbit look like?
- ▶ What H-invariant/ergodic measures are supported on this space?

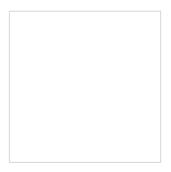
Homogeneous Dynamics

- ► *G*, a Lie group
- $\Gamma \leq G$, a lattice (discrete, finite covolume subgroup)
- $X = \Gamma \setminus G$, space of interest
- $H \leq G$, a closed subgroup
- Dynamics: $H \curvearrowright X$ by right translations

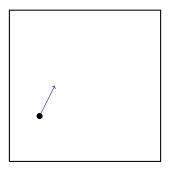
Possible questions:

- Given $x \in X$, what does the orbit xH look like?
- ▶ What does a *typical* orbit look like?
- ▶ What H-invariant/ergodic measures are supported on this space?

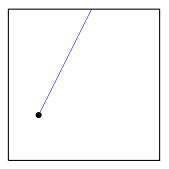
- ▶ If *v* has rational slope, then every orbit is periodic.
- ▶ If *v* has irrational slope, then every orbit is dense.



- ► If *v* has rational slope, then every orbit is periodic.
- ▶ If *v* has irrational slope, then every orbit is dense.



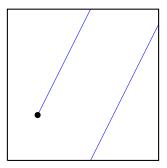
- ► If *v* has rational slope, then every orbit is periodic.
- ▶ If *v* has irrational slope, then every orbit is dense.



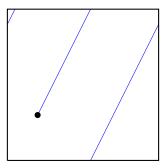
 $G = \mathbb{R}^2$, $\Gamma = \mathbb{Z}^2$, $X = \mathbb{T}^2$, $H = \{tv \mid t \in \mathbb{R}\}$ for some $v \in \mathbb{R}^2$

► If *v* has rational slope, then every orbit is periodic.

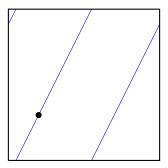
▶ If *v* has irrational slope, then every orbit is dense.



- ► If *v* has rational slope, then every orbit is periodic.
- ▶ If *v* has irrational slope, then every orbit is dense.

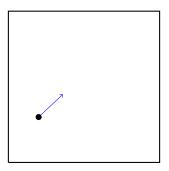


- ► If *v* has rational slope, then every orbit is periodic.
- ▶ If *v* has irrational slope, then every orbit is dense.



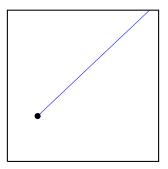
$$G = \mathbb{R}^2$$
, $\Gamma = \mathbb{Z}^2$, $X = \mathbb{T}^2$, $H = \{tv \mid t \in \mathbb{R}\}$ for some $v \in \mathbb{R}^2$

- ▶ If *v* has rational slope, then every orbit is periodic.
- ► If *v* has irrational slope, then every orbit is dense.



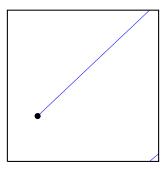
$$G = \mathbb{R}^2$$
, $\Gamma = \mathbb{Z}^2$, $X = \mathbb{T}^2$, $H = \{tv \mid t \in \mathbb{R}\}$ for some $v \in \mathbb{R}^2$

- ▶ If *v* has rational slope, then every orbit is periodic.
- ► If *v* has irrational slope, then every orbit is dense.



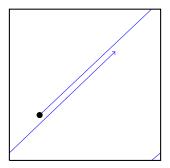
$$G = \mathbb{R}^2$$
, $\Gamma = \mathbb{Z}^2$, $X = \mathbb{T}^2$, $H = \{tv \mid t \in \mathbb{R}\}$ for some $v \in \mathbb{R}^2$

- ▶ If *v* has rational slope, then every orbit is periodic.
- ► If *v* has irrational slope, then every orbit is dense.



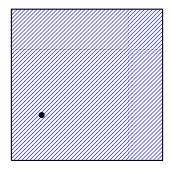
$$G = \mathbb{R}^2$$
, $\Gamma = \mathbb{Z}^2$, $X = \mathbb{T}^2$, $H = \{tv \mid t \in \mathbb{R}\}$ for some $v \in \mathbb{R}^2$

- ▶ If *v* has rational slope, then every orbit is periodic.
- ► If *v* has irrational slope, then every orbit is dense.



$$G = \mathbb{R}^2$$
, $\Gamma = \mathbb{Z}^2$, $X = \mathbb{T}^2$, $H = \{tv \mid t \in \mathbb{R}\}$ for some $v \in \mathbb{R}^2$

- ▶ If *v* has rational slope, then every orbit is periodic.
- ► If *v* has irrational slope, then every orbit is dense.

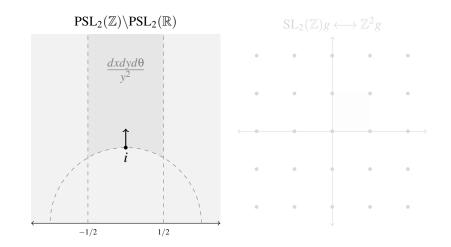


►
$$G = \operatorname{SL}_2(\mathbb{R})$$

► $\Gamma = \operatorname{SL}_2(\mathbb{Z})$
► $G \curvearrowright \mathbb{H}^2 := \{z = x + iy \in \mathbb{C} \mid y > 0\}$ by Möbius transformations:
 $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} : z \mapsto \frac{az+b}{cz+d}$

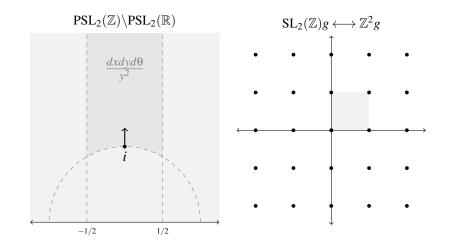
G ~ *T*¹ ℍ² by *g* : (*z*,*v*) → (*g*(*z*), *D_gv*) with Stab_{*G*}(*z*) = {±*I*}
 PSL₂(ℝ) ≅ *T*¹ ℍ²

★ Ξ ► ★ Ξ ►



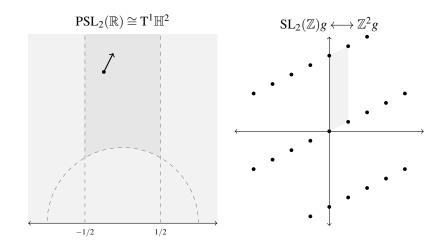
 $G = SL_n(\mathbb{R}), \ \Gamma = SL_n(\mathbb{Z}), \ \Gamma \setminus G \cong \{ \text{lattices in } \mathbb{R}^n \text{ of covolume } 1 \}$

> < 国 > < 国 >



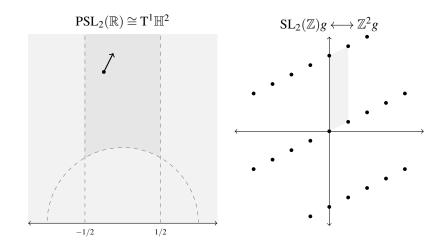
 $G = SL_n(\mathbb{R}), \ \Gamma = SL_n(\mathbb{Z}), \ \Gamma \setminus G \cong \{ \text{lattices in } \mathbb{R}^n \text{ of covolume } 1 \}$

伺 医子宫 医子宫 医子宫

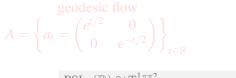


 $G = SL_n(\mathbb{R}), \ \Gamma = SL_n(\mathbb{Z}), \ \Gamma \setminus G \cong \{ \text{lattices in } \mathbb{R}^n \text{ of covolume } 1 \}$

- A - E - M

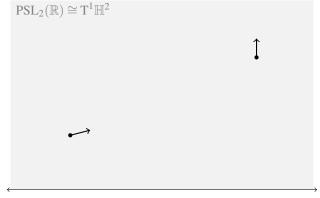


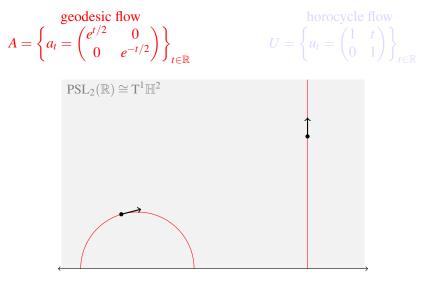
 $G = SL_n(\mathbb{R}), \ \Gamma = SL_n(\mathbb{Z}), \ \Gamma \backslash G \cong \{ \text{lattices in } \mathbb{R}^n \text{ of covolume } 1 \}$



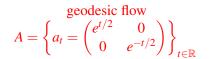
horocycle flow
$$U = \left\{ u_t = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \right\}_{t \in \mathbb{R}}$$

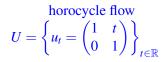
ヘロト 人間 とくほとくほとう



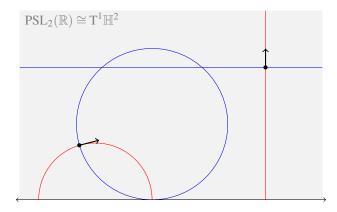


- ₹ € ►





(4) (E) (A) (E) (A)



Note:
$$a_t^{-1}u_s a_t = \begin{pmatrix} 1 & se^{-t} \\ 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 as $t \rightarrow \infty$

Definition

A subgroup $H \leq G$ is called *horospherical* if there exists $g \in G$ such that

$$H = \{h \in G \mid g^{-n}hg^n \to e \text{ as } n \to \infty\}.$$

/⊒ > < ∃ >

-

Note:
$$a_t^{-1}u_s a_t = \begin{pmatrix} 1 & se^{-t} \\ 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 as $t \rightarrow \infty$

Definition

A subgroup $H \leq G$ is called *horospherical* if there exists $g \in G$ such that

$$H = \{h \in G \mid g^{-n}hg^n \to e \text{ as } n \to \infty\}.$$

Fact: horospherical \rightleftharpoons unipotent

Example (Heisenberg group) $\begin{cases} \begin{pmatrix} 1 & x & y \\ 1 & z \\ & 1 \end{pmatrix} \middle| x, y, z \in \mathbb{R} \end{cases} \text{ with respect to, e.g., } \begin{pmatrix} 2 & \\ & 1 & \\ & & \frac{1}{2} \end{pmatrix}$

イロト イポト イヨト イヨト

Fact: horospherical $\stackrel{\Longrightarrow}{\Leftarrow}$ unipotent

Example (Heisenberg group)

$$\left\{ \begin{pmatrix} 1 & x & y \\ & 1 & z \\ & & 1 \end{pmatrix} \middle| x, y, z \in \mathbb{R} \right\} \text{ with respect to, e.g., } \begin{pmatrix} 2 & & \\ & 1 & \\ & & \frac{1}{2} \end{pmatrix}$$

Example
$$\left\{ \begin{pmatrix} 1 & t & t^2/2 \\ 1 & t \\ & 1 \end{pmatrix} \middle| t \in \mathbb{R} \right\}$$
 is NOT horospherical

Fact: horospherical \rightleftharpoons unipotent

Example (Heisenberg group)

$$\left\{ \begin{pmatrix} 1 & x & y \\ & 1 & z \\ & & 1 \end{pmatrix} \middle| x, y, z \in \mathbb{R} \right\} \text{ with respect to, e.g., } \begin{pmatrix} 2 & & \\ & 1 & \\ & & \frac{1}{2} \end{pmatrix}$$

Example $\left\{ \begin{pmatrix} 1 & t & t^2/2 \\ 1 & t \\ & 1 \end{pmatrix} \middle| t \in \mathbb{R} \right\}$ is NOT horospherical

(日)

Roughly speaking, a subset of *X* equidistributes respect to a measure μ if it spends the expected amount of time in measurable subsets.

Example

A sequence $\{x_n\}_{n \in \mathbb{N}} \subset X$ equidistributes with respect to μ if

$$\frac{1}{N}\sum_{n=1}^{N}f(x_n)\to \int_X fd\mu$$

for all $f \in C_c^{\infty}(X)$.

Say equidistribution is effective if the rate of convergence is known.

□□ ▶ ▲ □ ▶ ▲ □

Roughly speaking, a subset of *X* equidistributes respect to a measure μ if it spends the expected amount of time in measurable subsets.

Example

A sequence $\{x_n\}_{n \in \mathbb{N}} \subset X$ equidistributes with respect to μ if

$$\frac{1}{N}\sum_{n=1}^{N}f(x_n)\to \int_X fd\mu$$

for all $f \in C_c^{\infty}(X)$.

Say equidistribution is *effective* if the rate of convergence is known.

・ 伊 ト ・ ヨ ト ・ ヨ ト

Roughly speaking, a subset of *X* equidistributes respect to a measure μ if it spends the expected amount of time in measurable subsets.

Example

A path $\{x(t)\}_{t \in \mathbb{R}^+} \subset X$ equidistributes with respect to μ if

$$\frac{1}{T}\int_0^T f(x(t))dt \to \int_X fd\mu$$

for all $f \in C_c^{\infty}(X)$.

Say equidistribution is *effective* if the rate of convergence is known.

伺下 イヨト イヨト

Theorem

Let $H \leq G$ be horospherical. For any $x \in X$, there exists a closed, connected subgroup $H \leq L \leq G$ such that $\overline{xH} = xL$ and such that xLsupports an L-invariant probability measure μ_x with respect to which the H-orbit of x equidistributes.

- ► Hedlund, Furstenberg (SL₂)
- **Burger** (SL₂, Γ cocompact, effective w/ polynomial rate)
- Veech, Ellis-Perrizo (general horospherical, Γ cocompact)
- Margulis, Dani, Dani-Margulis (quantitative nondivergence)
- Dani (above theorem)
- Strömbergsson, Flaminio-Forni (SL₂, Γ non-uniform, effective w/ polynomial rate depending on basepoint)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

Let $H \leq G$ be horospherical. For any $x \in X$, there exists a closed, connected subgroup $H \leq L \leq G$ such that $\overline{xH} = xL$ and such that xLsupports an L-invariant probability measure μ_x with respect to which the H-orbit of x equidistributes.

- Hedlund, Furstenberg (SL₂)
- Burger (SL₂, Γ cocompact, effective w/ polynomial rate)
- Veech, Ellis-Perrizo (general horospherical, Γ cocompact)
- Margulis, Dani, Dani-Margulis (quantitative nondivergence)
- Dani (above theorem)
- Strömbergsson, Flaminio-Forni (SL₂, Γ non-uniform, effective w/ polynomial rate depending on basepoint)

< 回 > < 回 > < 回 >

Qualitative Equidistribution

Theorem (Dani)

For every $x = \Gamma g \in X$ *, either*

$$\frac{1}{|B_T|} \int_{B_T} f(xu) du \xrightarrow[T \to \infty]{} \int_X f dm \quad \forall f \in C_c^{\infty}(X)$$
(1)

or there is a proper, nontrivial rational subspace $W \subset \mathbb{R}^n$ such that Wg is U-invariant.

- du Haar measure on U
- ► *dm* pushforward of Haar measure on *G* to *X*
- $B_T = a_{\log T} B_1^U a_{\log T}^{-1}$ expanding Følner sets
- ▶ If x satisfies (1), call it generic.
 (Birkhoff's Theorem ⇒ almost every x is generic.)

Theorem (M.)

There exists $\gamma > 0$ such that for every $x = \Gamma g \in X$ and T > R large enough, either:

$$\frac{1}{|B_T|} \int_{B_T} f(xu) du - \int_X f dm \bigg| \ll_f R^{-\gamma} \quad \forall f \in C_c^{\infty}(X)$$
 (2a)

or

$$\exists j \in \{1, \cdots, n-1\} \text{ and } w \in \Lambda^j(\mathbb{Z}^n) \setminus \{0\} \text{ such that} \\ \|wg_0 u\| < R \ \forall u \in B_T.$$
(2b)

- ▶ If x satisfies (2a) for fixed R and all large T, call it *R*-generic. Note: x is generic \iff x is *R*-generic for all R > 0.
- Condition (2b) says that there is a rational subspace $W \in \mathbb{R}^n$ such that Wg is *R*-almost invariant when flowed up to time *T*.

伺き くほき くほう

3

Theorem (M.)

There exists $\gamma > 0$ such that for every $x = \Gamma g \in X$ and T > R large enough, either:

$$\frac{1}{|B_T|} \int_{B_T} f(xu) du - \int_X f dm \leqslant_f R^{-\gamma} \quad \forall f \in C_c^{\infty}(X)$$
 (2a)

or

$$\exists j \in \{1, \cdots, n-1\} \text{ and } w \in \Lambda^j(\mathbb{Z}^n) \setminus \{0\} \text{ such that} \\ \|wg_0 u\| < R \ \forall u \in B_T.$$
(2b)

▶ If x satisfies (2a) for fixed R and all large T, call it R-generic.
 Note: x is generic ⇐⇒ x is R-generic for all R > 0.

• Condition (2b) says that there is a rational subspace $W \in \mathbb{R}^n$ such that Wg is *R*-almost invariant when flowed up to time *T*.

伺 とくほ とくほ とう

3

Theorem (M.)

There exists $\gamma > 0$ such that for every $x = \Gamma g \in X$ and T > R large enough, either:

$$\frac{1}{|B_T|} \int_{B_T} f(xu) du - \int_X f dm \leqslant_f R^{-\gamma} \quad \forall f \in C_c^{\infty}(X)$$
 (2a)

or

$$\exists j \in \{1, \cdots, n-1\} \text{ and } w \in \Lambda^j(\mathbb{Z}^n) \setminus \{0\} \text{ such that} \\ \|wg_0 u\| < R \ \forall u \in B_T.$$
(2b)

- ► If x satisfies (2a) for fixed R and all large T, call it R-generic. Note: x is generic ⇐⇒ x is R-generic for all R > 0.
- Condition (2b) says that there is a rational subspace $W \in \mathbb{R}^n$ such that Wg is *R*-almost invariant when flowed up to time *T*.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Why do we want effective results?

・ロト ・聞 ト ・ 国 ト ・ 国 ト

æ

Why do we want effective results?

Applications in number theory often require effective rates.

伺 とくき とくきょ

Möbius Disjointness

Recall: the Möbius function

$$\mu(n) = \begin{cases} 0 & \text{if } n \text{ is not squarefree} \\ (-1)^k & \text{if } n \text{ is the product of } k \text{ distinct primes} \end{cases}$$

Conjecture (Sarnak)

$$\frac{1}{N}\sum_{n\leq N}\mu(n)f(T^nx)\to 0$$

for any:

- ► X compact metric space
- $\blacktriangleright \ x \in X$
- $T: X \rightarrow X$ continuous, zero topological entropy
- $\blacktriangleright f \in C(X)$

Recall: the Möbius function

$$\mu(n) = \begin{cases} 0 & \text{if } n \text{ is not squarefree} \\ (-1)^k & \text{if } n \text{ is the product of } k \text{ distinct primes} \end{cases}$$

Conjecture (Sarnak)

$$\frac{1}{N}\sum_{n\leq N}\mu(n)f(T^nx)\to 0$$

for any:

- ► X compact metric space
- ► $x \in X$
- $T: X \rightarrow X$ continuous, zero topological entropy
- $f \in C(X)$

A > 4

Partial results:

- Vinogradov/Davenport (circle rotations/translations on a compact group–effective)
- Green-Tao (nilflows—effective)
- Bourgain-Sarnak-Ziegler/Peckner (unipotent flows on homogeneous spaces—not effective)

Conjecture (Margulis)

Let $\{u_t\}_{t\in\mathbb{R}}$ be a unipotent flow on a homogeneous space X. If $\{xu_t | t\in\mathbb{R}\}$ equidistributes in X, then so does $\{xu_p | p \text{ is prime}\}$.

Theorem (Bourgain)

For any measurable dynamical system (X, \mathcal{B}, μ, T) and $f \in L^2(X, \mu)$, the ergodic averages over primes

$$\frac{1}{\pi(N)} \sum_{\substack{p \le N \\ p \text{ prime}}} f(T^p x)$$

converge for μ *-a.e* $x \in X$ *.*

Conjecture (Margulis)

Let $\{u_t\}_{t\in\mathbb{R}}$ be a unipotent flow on a homogeneous space X. If $\{xu_t | t\in\mathbb{R}\}$ equidistributes in X, then so does $\{xu_p | p \text{ is prime}\}$.

Theorem (Bourgain)

For any measurable dynamical system (X, \mathcal{B}, μ, T) and $f \in L^2(X, \mu)$, the ergodic averages over primes

$$\frac{1}{\pi(N)} \sum_{\substack{p \le N \\ p \text{ prime}}} f(T^p x)$$

converge for μ *-a.e* $x \in X$ *.*

Definition

An integer is called *almost-prime* if it has fewer than a fixed number of prime factors.

Theorem (Sarnak-Ubis)

There exists $\ell \in \mathbb{N}$ *such that for any generic* $x \in SL_2(\mathbb{Z}) \setminus SL_2(\mathbb{R})$ *, the set*

 $\{xu(k) \mid k \in \mathbb{Z} \text{ has fewer than } \ell \text{ prime factors}\}$

is dense in $SL_2(\mathbb{Z}) \setminus SL_2(\mathbb{R})$.

Definition

An integer is called *almost-prime* if it has fewer than a fixed number of prime factors.

Theorem (Sarnak-Ubis)

There exists $\ell \in \mathbb{N}$ *such that for any generic* $x \in SL_2(\mathbb{Z}) \setminus SL_2(\mathbb{R})$ *, the set*

 $\{xu(k) \mid k \in \mathbb{Z} \text{ has fewer than } \ell \text{ prime factors}\}$

is dense in $SL_2(\mathbb{Z}) \setminus SL_2(\mathbb{R})$.

Let $G = SL_n(\mathbb{R})$, $\Gamma \leq G$ a lattice, and $u(\mathbf{t})$ a *d*-dimensional horospherical flow on $X = \Gamma \setminus G$. Define

 $\mathcal{A}_{\ell}(x) = \{xu(k_1, k_2, \cdots, k_d) \mid k_i \in \mathbb{Z} \text{ has fewer than } \ell \text{ prime factors}\}.$

Theorem (M.)

- 1. If Γ is cocompact, then there exists $\ell = \ell(n, d, \Gamma)$ such that for any $x \in X$, the set $\mathcal{A}_{\ell}(x)$ is dense in X.
- 2. If $\Gamma = SL_n(\mathbb{Z})$ and $x = \Gamma g \in X$ satisfies a Diophantine property with parameter δ , then there exists $\ell = \ell(n, d, \delta)$ such that $\mathcal{A}_{\ell}(x)$ is dense in X.

・ 同 ト ・ 国 ト ・ 国 ト ・

Let $G = SL_n(\mathbb{R})$, $\Gamma \leq G$ a lattice, and $u(\mathbf{t})$ a *d*-dimensional horospherical flow on $X = \Gamma \setminus G$. Define

 $\mathcal{A}_{\ell}(x) = \{xu(k_1, k_2, \cdots, k_d) \mid k_i \in \mathbb{Z} \text{ has fewer than } \ell \text{ prime factors} \}.$

Theorem (M.)

- 1. If Γ is cocompact, then there exists $\ell = \ell(n, d, \Gamma)$ such that for any $x \in X$, the set $\mathcal{A}_{\ell}(x)$ is dense in X.
- 2. If $\Gamma = SL_n(\mathbb{Z})$ and $x = \Gamma g \in X$ satisfies a Diophantine property with parameter δ , then there exists $\ell = \ell(n, d, \delta)$ such that $\mathcal{A}_{\ell}(x)$ is dense in X.

(1日) (1日) (1日)

Let $G = SL_n(\mathbb{R})$, $\Gamma \leq G$ a lattice, and $u(\mathbf{t})$ a *d*-dimensional horospherical flow on $X = \Gamma \setminus G$. Define

 $\mathcal{A}_{\ell}(x) = \{xu(k_1, k_2, \cdots, k_d) \mid k_i \in \mathbb{Z} \text{ has fewer than } \ell \text{ prime factors} \}.$

Theorem (M.)

- 1. If Γ is cocompact, then there exists $\ell = \ell(n, d, \Gamma)$ such that for any $x \in X$, the set $\mathcal{A}_{\ell}(x)$ is dense in X.
- 2. If $\Gamma = SL_n(\mathbb{Z})$ and $x = \Gamma g \in X$ satisfies a Diophantine property with parameter δ , then there exists $\ell = \ell(n, d, \delta)$ such that $\mathcal{A}_{\ell}(x)$ is dense in X.

Questions?

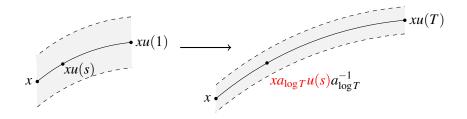
ヘロト 人間 とく ヨン く ヨン

æ

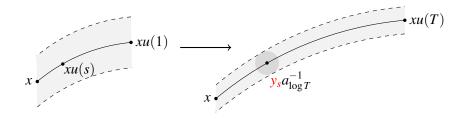
Proof Idea:

- 1. Prove effective equidistribution of the continuous horospherical flow
- 2. Use this to prove effective equidistribution of arithmetic progressions of times
- 3. Apply sieve methods to deduce a statement about almost-primes

Proof Idea: Margulis's thickening method



Proof Idea: Margulis's thickening method



Effective mixing of the A-action:

Theorem (Howe-Moore, Kleinbock-Margulis)

Let Γ be cocompact. There exists $\tilde{\gamma} > 0$ such that for any $x \in X$ and $f, g \in C_c^{\infty}(X)$,

$$\left|\int_X f(xa_t)g(x)dm - \int_X fdm \int_X gdm\right| \ll_{f,g} e^{-\tilde{\gamma}t}.$$

Note:

$$\frac{1}{|B_T|} \int_{B_T} f(xu) du = \int_{B_1} f(xa_{\log T} u a_{\log T}^{-1}) du$$
$$= \int_U \chi_{B_1}(u) f(xa_{\log T} u a_{\log T}^{-1}) du$$

Effective mixing of the A-action:

Theorem (Howe-Moore, Kleinbock-Margulis)

Let Γ be cocompact. There exists $\tilde{\gamma} > 0$ such that for any $x \in X$ and $f, g \in C_c^{\infty}(X)$,

$$\left|\int_X f(xa_t)g(x)dm - \int_X fdm \int_X gdm\right| \ll_{f,g} e^{-\tilde{\gamma}t}.$$

Note:

$$\frac{1}{|B_T|} \int_{B_T} f(xu) du = \int_{B_1} f(xa_{\log T} u a_{\log T}^{-1}) du$$
$$= \int_U \chi_{B_1}(u) f(xa_{\log T} u a_{\log T}^{-1}) du$$

 $\int_{U} \chi_{B_1}(u) f(x a_{\log T} u a_{\log T}^{-1}) du$

Problems:

1. χ_{B_1} not smooth

- Convolve with a smooth approximation to the identity
- 2. Integral over U, not X
 - Thicken to get integral in G, project to X (need to make sure it injects)
- 3. Moving basepoint
 - Quantitative nondivergence (Dani-Margulis) \implies can get a good radius of convergence for all but a small proportion of $u \in B_1$

・ 「 ト ・ ヨ ト ・ ヨ ト

 $\int_{U} \chi_{B_1}(u) f(x a_{\log T} u a_{\log T}^{-1}) du$

Problems:

- 1. χ_{B_1} not smooth
 - Convolve with a smooth approximation to the identity
- 2. Integral over U, not X
 - Thicken to get integral in G, project to X (need to make sure it injects)
- 3. Moving basepoint
 - Quantitative nondivergence (Dani-Margulis) \implies can get a good radius of convergence for all but a small proportion of $u \in B_1$

(日本)(日本)(日本)

 $\int_{U} \chi_{B_1}(u) f(x a_{\log T} u a_{\log T}^{-1}) du$

Problems:

- 1. χ_{B_1} not smooth
 - Convolve with a smooth approximation to the identity
- 2. Integral over U, not X
 - Thicken to get integral in G, project to X (need to make sure it injects)
- 3. Moving basepoint
 - Quantitative nondivergence (Dani-Margulis) \implies can get a good radius of convergence for all but a small proportion of $u \in B_1$

(日本)(日本)(日本)

 $\int_{U} \chi_{B_1}(u) f(x a_{\log T} u a_{\log T}^{-1}) du$

Problems:

- 1. χ_{B_1} not smooth
 - Convolve with a smooth approximation to the identity
- 2. Integral over U, not X
 - Thicken to get integral in *G*, project to *X* (need to make sure it injects)
- 3. Moving basepoint
 - Quantitative nondivergence (Dani-Margulis) \implies can get a good radius of convergence for all but a small proportion of $u \in B_1$

(日本)(日本)(日本)

 $\int_{U} \chi_{B_1}(u) f(x a_{\log T} u a_{\log T}^{-1}) du$

Problems:

- 1. χ_{B_1} not smooth
 - Convolve with a smooth approximation to the identity
- 2. Integral over U, not X
 - Thicken to get integral in *G*, project to *X* (need to make sure it injects)
- 3. Moving basepoint
 - ▶ Quantitative nondivergence (Dani-Margulis) ⇒ can get a good radius of convergence for all but a small proportion of *u* ∈ *B*₁

 $\int_{U} \chi_{B_1}(u) f(x a_{\log T} u a_{\log T}^{-1}) du$

Problems:

- 1. χ_{B_1} not smooth
 - Convolve with a smooth approximation to the identity
- 2. Integral over U, not X
 - Thicken to get integral in G, project to X (need to make sure it injects)
- 3. Moving basepoint
 - ► Quantitative nondivergence (Dani-Margulis) ⇒ can get a good radius of convergence for all but a small proportion of u ∈ B₁

伺い イヨト イヨト

Theorem (M.)

Let $u(t_1, \dots, t_d)$ be an abelian horospherical flow. There exists $\beta > 0$ such that if $x \in X$ satisfies (2a) for T > R large enough, then for any $1 \le K \le T$ we have

$$\left. \frac{K^d}{T^d} \sum_{\substack{\mathbf{k} \in \mathbb{Z}^d \\ K\mathbf{k} \in B_T}} f(xu(K\mathbf{k})) - \int_X fdm \right| \ll_f R^{-\beta} K^{d/(d+1)} \mathcal{S}(f)$$

Proof Idea: Venkatesh's van der Corput method

For simplicity, assume $G = SL_2(\mathbb{R}), \int f dm = 0.$

Let

$$E_{K,T}(f) = \frac{K}{T} \sum_{\substack{k \in \mathbb{Z} \\ 0 \le Kk < T}} f(xu(Kk))$$

be the average over the set:

$$x$$
 $xu(K)$ $xu(2K)$ $xu(T)$

Define new function for 1 < H < T:

$$f_H(x) = \frac{1}{H} \sum_{\ell=0}^{H} f(xu(K\ell))$$

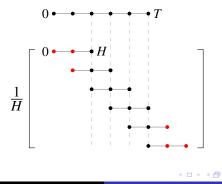
Note: $E_{K,T}(f_H)$ is close to $E_{K,T}(f)$:

• • = •

Define new function for 1 < H < T:

$$f_H(x) = \frac{1}{H} \sum_{\ell=0}^{H} f(xu(K\ell))$$

Note: $E_{K,T}(f_H)$ is close to $E_{K,T}(f)$:



Thicken the discrete set in *U* by $\delta > 0$:

Let $E_{K,T,\delta}$ be the ergodic average over this set.

Note: By uniform continuity, $E_{K,T,\delta}(f_H)$ is close to $E_{K,T}(f_H)$.

Thicken the discrete set in *U* by $\delta > 0$:

x xu(K) xu(2K) xu(T)

Let $E_{K,T,\delta}$ be the ergodic average over this set.

Note: By uniform continuity, $E_{K,T,\delta}(f_H)$ is close to $E_{K,T}(f_H)$.

Note:

$$E_{K,T,\delta}(f_H)^2 \ll \frac{K}{\delta H^2} \sum_{\ell_1=0}^{H} \sum_{\ell_2=0}^{H} \frac{1}{T} \int_0^T f(xu(s)u(K\ell_1)) f(xu(s)u(K\ell_2)) ds$$

.≣⇒

Note:

$$E_{K,T,\delta}(f_H)^2 \ll \frac{K}{\delta H^2} \sum_{\ell_1=0}^{H} \sum_{\ell_2=0}^{H} \frac{1}{T} \int_0^T f(xu(s)u(K\ell_1)) f(xu(s)u(K\ell_2)) ds$$

 \downarrow effective equidistribution

$$\ll \frac{K}{\delta H^2} \sum_{\ell_1=0}^{H} \sum_{\ell_2=0}^{H} \langle u(K(\ell_1 - \ell_2)) \cdot f, f \rangle_{L^2(X)} + error$$

-≣->

Note:

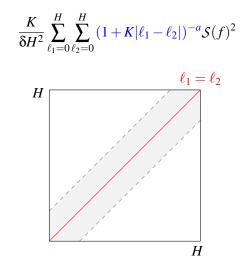
$$E_{K,T,\delta}(f_H)^2 \ll \frac{K}{\delta H^2} \sum_{\ell_1=0}^{H} \sum_{\ell_2=0}^{H} \frac{1}{T} \int_0^T f(xu(s)u(K\ell_1)) f(xu(s)u(K\ell_2)) ds$$

 \downarrow effective equidistribution

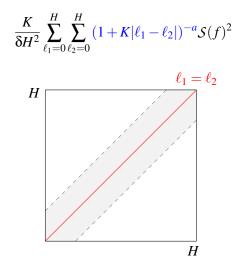
$$\ll \frac{K}{\delta H^2} \sum_{\ell_1=0}^{H} \sum_{\ell_2=0}^{H} \langle u(K(\ell_1-\ell_2)) \cdot f, f \rangle_{L^2(X)} + error$$

 \downarrow bounds on matrix coefficients

$$\ll \frac{K}{\delta H^2} \sum_{\ell_1=0}^{H} \sum_{\ell_2=0}^{H} (1+K|\ell_1-\ell_2|)^{-a} \mathcal{S}(f)^2 + error$$



• Choose H, δ to optimize the various error terms



• Choose H, δ to optimize the various error terms

To sieve the orbits for almost-primes, need control over averages along arithmetic progressions—this is exactly what the last theorem tells us.

For $f \in C_c^{\infty}(X)$ and *T* large enough,

$$\frac{(\log T)^d}{T^d} \sum_{\substack{\mathbf{k} \in B_T\\(k_1 \cdots k_d, P) = 1}} f(xu(\mathbf{k})) \asymp_{\alpha} \int f dm$$

where *P* is the product of primes less than T^{α} .

Note: The lower bound implies the result for integer points with fewer than $1/\alpha$ prime factors (consider *f* a bump function on any small set).

伺下 イヨト イヨト

To sieve the orbits for almost-primes, need control over averages along arithmetic progressions—this is exactly what the last theorem tells us.

For $f \in C_c^{\infty}(X)$ and *T* large enough,

$$\frac{(\log T)^d}{T^d} \sum_{\substack{\mathbf{k} \in B_T\\(k_1 \cdots k_d, P) = 1}} f(xu(\mathbf{k})) \asymp_{\alpha} \int f dm$$

where *P* is the product of primes less than T^{α} .

Note: The lower bound implies the result for integer points with fewer than $1/\alpha$ prime factors (consider *f* a bump function on any small set).

何とくほとくほと

To sieve the orbits for almost-primes, need control over averages along arithmetic progressions—this is exactly what the last theorem tells us.

For $f \in C_c^{\infty}(X)$ and *T* large enough,

$$\frac{(\log T)^d}{T^d} \sum_{\substack{\mathbf{k} \in B_T\\(k_1 \cdots k_d, P) = 1}} f(xu(\mathbf{k})) \asymp_{\alpha} \int f dm$$

where *P* is the product of primes less than T^{α} .

Note: The lower bound implies the result for integer points with fewer than $1/\alpha$ prime factors (consider *f* a bump function on any small set).

通とくほとくほと

Thank you!

Taylor McAdam Almost-Prime Times in Horospherical Flows

ヘロト 人間 とくほとくほとう

æ