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Homogeneous Dynamics

I G, a Lie group
I Γ≤ G, a lattice (discrete, finite covolume subgroup)
I X = Γ\G, space of interest
I H ≤ G, a closed subgroup
I Dynamics: H y X by right translations

Possible questions:
I Given x ∈ X , what does the orbit xH look like?
I What does a typical orbit look like?
I What H-invariant/ergodic measures are supported on this space?
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Example: Linear Flows on the Torus

G = R2, Γ = Z2, X = T2, H = {tv t ∈ R} for some v ∈ R2

I If v has rational slope, then every orbit is periodic.
I If v has irrational slope, then every orbit is dense.
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The Space of Lattices

I G = SL2(R)
I Γ = SL2(Z)
I G yH2 := {z = x+ iy ∈ C y > 0} by Möbius transformations:

g =

(
a b
c d

)
: z 7→ az+b

cz+d

I G y T 1H2 by g : (z,v) 7→ (g(z),Dgv) with StabG(z) = {±I}
I PSL2(R)∼= T 1H2
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The Space of Lattices

PSL2(Z)\PSL2(R)

dxdydθ

y2

i

−1/2 1/2

SL2(Z)g←→ Z2g

1

G = SLn(R), Γ = SLn(Z), Γ\G∼= {lattices in Rn of covolume 1}
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Subgroup Actions

geodesic flow horocycle flow

A =

{
at =

(
et/2 0
0 e−t/2

)}
t∈R

U =

{
ut =

(
1 t
0 1

)}
t∈R

PSL2(R)∼= T1H2
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Horospherical Subgroups

Note: a−1
t usat =

(
1 se−t

0 1

)
→
(

1 0
0 1

)
as t→ ∞

Definition
A subgroup H ≤ G is called horospherical if there exists g ∈ G such
that

H = {h ∈ G g−nhgn→ e as n→ ∞}.
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Horospherical Subgroups

Fact: horospherical =⇒
6⇐= unipotent

Example (Heisenberg group)
1 x y

1 z
1

 x,y,z ∈ R

 with respect to, e.g.,

2
1

1
2



Example
1 t t2/2

1 t
1

 t ∈ R

 is NOT horospherical
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Equidistribution

Roughly speaking, a subset of X equidistributes respect to a measure
µ if it spends the expected amount of time in measurable subsets.

Example

A sequence {xn}n∈N ⊂ X equidistributes with respect to µ if

1
N

N

∑
n=1

f (xn)→
∫

X
f dµ

for all f ∈C∞
c (X).

Say equidistribution is effective if the rate of convergence is known.
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Equidistribution

Roughly speaking, a subset of X equidistributes respect to a measure
µ if it spends the expected amount of time in measurable subsets.

Example

A path {x(t)}t∈R+ ⊂ X equidistributes with respect to µ if

1
T

∫ T

0
f (x(t))dt→

∫
X

f dµ

for all f ∈C∞
c (X).

Say equidistribution is effective if the rate of convergence is known.
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Rigidity of Horospherical Actions

Theorem
Let H ≤ G be horospherical. For any x ∈ X, there exists a closed,
connected subgroup H ≤ L≤ G such that xH = xL and such that xL
supports an L-invariant probability measure µx with respect to which
the H-orbit of x equidistributes.

I Hedlund, Furstenberg (SL2)
I Burger (SL2, Γ cocompact, effective w/ polynomial rate)
I Veech, Ellis-Perrizo (general horospherical, Γ cocompact)
I Margulis, Dani, Dani-Margulis (quantitative nondivergence)
I Dani (above theorem)
I Strömbergsson, Flaminio-Forni

(SL2, Γ non-uniform, effective w/ polynomial rate depending on
basepoint)
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Qualitative Equidistribution

Theorem (Dani)
For every x = Γg ∈ X, either

1
|BT |

∫
BT

f (xu)du−−−→
T→∞

∫
X

f dm ∀ f ∈C∞
c (X) (1)

or there is a proper, nontrivial rational subspace W ⊂ Rn such that
Wg is U-invariant.

I du Haar measure on U
I dm pushforward of Haar measure on G to X
I BT = alogT BU

1 a−1
logT expanding Følner sets

I If x satisfies (1), call it generic.
(Birkhoff’s Theorem =⇒ almost every x is generic.)
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Effective Equidistribution

Theorem (M.)
There exists γ > 0 such that for every x = Γg ∈ X and T > R large
enough, either:∣∣∣∣ 1

|BT |

∫
BT

f (xu)du−
∫

X
f dm

∣∣∣∣� f R−γ ∀ f ∈C∞
c (X) (2a)

or

∃ j ∈ {1, · · · ,n−1} and w ∈ Λ
j(Zn)\{0} such that

||wg0u||< R ∀u ∈ BT .
(2b)

I If x satisfies (2a) for fixed R and all large T , call it R-generic.
Note: x is generic ⇐⇒ x is R-generic for all R > 0.

I Condition (2b) says that there is a rational subspace W ∈Rn such
that Wg is R-almost invariant when flowed up to time T .
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But Why?

Why do we want effective results?
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But Why?

Why do we want effective results?

I Applications in number theory often require effective rates.
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Möbius Disjointness

Recall: the Möbius function

µ(n) =

{
0 if n is not squarefree
(−1)k if n is the product of k distinct primes

Conjecture (Sarnak)

1
N ∑

n≤N
µ(n) f (T nx)→ 0

for any:
I X compact metric space
I x ∈ X
I T : X → X continuous, zero topological entropy
I f ∈C(X)
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Möbius Disjointness

Partial results:
I Vinogradov/Davenport (circle rotations/translations on a

compact group–effective)
I Green-Tao (nilflows—effective)
I Bourgain-Sarnak-Ziegler/Peckner (unipotent flows on

homogeneous spaces—not effective)
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Equidistribution of Primes

Conjecture (Margulis)

Let {ut}t∈R be a unipotent flow on a homogeneous space X. If
{xut t ∈ R} equidistributes in X, then so does {xup p is prime}.

Theorem (Bourgain)

For any measurable dynamical system (X ,B,µ,T ) and f ∈ L2(X ,µ),
the ergodic averages over primes

1
π(N) ∑

p≤N
p prime

f (T px)

converge for µ-a.e x ∈ X.
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The Horocycle Flow at Almost-Prime Times

Definition
An integer is called almost-prime if it has fewer than a fixed number
of prime factors.

Theorem (Sarnak-Ubis)

There exists ` ∈ N such that for any generic x ∈ SL2(Z)\SL2(R), the
set

{xu(k) k ∈ Z has fewer than ` prime factors}

is dense in SL2(Z)\SL2(R).
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Horospherical Flows at Almost-Prime Times

Let G = SLn(R), Γ≤ G a lattice, and u(t) a d-dimensional
horospherical flow on X = Γ\G. Define

A`(x) = {xu(k1,k2, · · · ,kd) | ki ∈ Z has fewer than ` prime factors}.

Theorem (M.)

1. If Γ is cocompact, then there exists `= `(n,d,Γ) such that for
any x ∈ X, the set A`(x) is dense in X.

2. If Γ = SLn(Z) and x = Γg ∈ X satisfies a Diophantine property
with parameter δ, then there exists `= `(n,d,δ) such that A`(x)
is dense in X.
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Questions?
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Almost-Primes in Horospherical Flows

Proof Idea:

1. Prove effective equidistribution of the continuous horospherical
flow

2. Use this to prove effective equidistribution of arithmetic
progressions of times

3. Apply sieve methods to deduce a statement about almost-primes
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Effective Equidistribution of the Continuous Flow

Proof Idea: Margulis’s thickening method

xu(T )

x
xalogT u(s)a−1

logT

xu(1)

x
xu(s)
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Effective Equidistribution of the Continuous Flow

Proof Idea: Margulis’s thickening method

xu(T )

x
ysa−1

logT

xu(1)

x
xu(s)
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Effective Equidistribution of the Continuous Flow

Effective mixing of the A-action:

Theorem (Howe-Moore, Kleinbock-Margulis)
Let Γ be cocompact. There exists γ̃ > 0 such that for any x ∈ X and
f ,g ∈C∞

c (X),∣∣∣∣∫X
f (xat)g(x)dm−

∫
X

f dm
∫

X
gdm

∣∣∣∣� f ,g e−γ̃t .

Note:

1
|BT |

∫
BT

f (xu)du =
∫

B1

f (xalogT ua−1
logT )du

=
∫

U
χB1(u) f (xalogT ua−1

logT )du
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Effective Equidistribution of the Continuous Flow

∫
U

χB1(u) f (xalogT ua−1
logT )du

Problems:

1. χB1 not smooth
I Convolve with a smooth approximation to the identity

2. Integral over U , not X
I Thicken to get integral in G, project to X (need to make sure it

injects)
3. Moving basepoint

I Quantitative nondivergence (Dani-Margulis) =⇒ can get a good
radius of convergence for all but a small proportion of u ∈ B1
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Effective Equidistribution of Arithmetic Progressions

Theorem (M.)

Let u(t1, · · · , td) be an abelian horospherical flow. There exists β > 0
such that if x ∈ X satisfies (2a) for T > R large enough, then for any
1≤ K ≤ T we have∣∣∣∣∣∣∣

Kd

T d ∑
k∈Zd

Kk∈BT

f (xu(Kk))−
∫

X
f dm

∣∣∣∣∣∣∣� f R−βKd/(d+1)S( f ).
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Effective Equidistribution of Arithmetic Progressions

Proof Idea: Venkatesh’s van der Corput method

For simplicity, assume G = SL2(R),
∫

f dm = 0.

Let
EK,T ( f ) =

K
T ∑

k∈Z
0≤Kk<T

f (xu(Kk))

be the average over the set:

x xu(T )xu(K) xu(2K)
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Effective Equidistribution of Arithmetic Progressions

Define new function for 1 < H < T :

fH(x) =
1
H

H

∑
`=0

f (xu(K`))

Note: EK,T ( fH) is close to EK,T ( f ):

1
H

0

0

T

H
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Effective Equidistribution of Arithmetic Progressions

Thicken the discrete set in U by δ > 0:

x xu(T )xu(K) xu(2K)

Let EK,T,δ be the ergodic average over this set.

Note: By uniform continuity, EK,T,δ( fH) is close to EK,T ( fH).
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Effective Equidistribution of Arithmetic Progressions

Note:

EK,T,δ( fH)
2� K

δH2

H

∑
`1=0

H

∑
`2=0

1
T

∫ T

0
f (xu(s)u(K`1)) f (xu(s)u(K`2))ds
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Effective Equidistribution of Arithmetic Progressions

Note:

EK,T,δ( fH)
2� K

δH2

H

∑
`1=0

H

∑
`2=0

1
T

∫ T

0
f (xu(s)u(K`1)) f (xu(s)u(K`2))ds

↓ effective equidistribution

� K
δH2

H

∑
`1=0

H

∑
`2=0
〈u(K(`1− `2)) · f , f 〉L2(X)+ error
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Effective Equidistribution of Arithmetic Progressions

Note:

EK,T,δ( fH)
2� K

δH2

H

∑
`1=0

H

∑
`2=0

1
T

∫ T

0
f (xu(s)u(K`1)) f (xu(s)u(K`2))ds

↓ effective equidistribution

� K
δH2

H

∑
`1=0

H

∑
`2=0
〈u(K(`1− `2)) · f , f 〉L2(X)+ error

↓ bounds on matrix coefficients

� K
δH2

H

∑
`1=0

H

∑
`2=0

(1+K|`1− `2|)−aS( f )2 + error
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Effective Equidistribution of Arithmetic Progressions

K
δH2

H

∑
`1=0

H

∑
`2=0

(1+K|`1− `2|)−aS( f )2

H

H
`1 = `2

I Choose H, δ to optimize the various error terms
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Effective Equidistribution of Arithmetic Progressions

K
δH2

H

∑
`1=0

H

∑
`2=0

(1+K|`1− `2|)−aS( f )2

H

H
`1 = `2

I Choose H, δ to optimize the various error terms
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Sieving

To sieve the orbits for almost-primes, need control over averages
along arithmetic progressions—this is exactly what the last theorem
tells us.

For f ∈C∞
c (X) and T large enough,

(logT )d

T d ∑
k∈BT

(k1···kd ,P)=1

f (xu(k))�α

∫
f dm

where P is the product of primes less than T α.

Note: The lower bound implies the result for integer points with fewer
than 1/α prime factors (consider f a bump function on any small set).
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Thank you!
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