Gaps of saddle connection directions for some branched covers of tori

Anthony Sanchez
asanch33@uw.edu
West Coast Dynamics Seminar
May 14 ${ }^{\text {th }}, 2020$

Translation surfaces

A translation surface is a collection of polygons with edge identifications given by translations.

Translation surfaces

A translation surface is a collection of polygons with edge identifications given by translations.

Torus

Translation surfaces

A translation surface is a collection of polygons with edge identifications given by translations.

Torus

- Genus 1

Translation surfaces

A translation surface is a collection of polygons with edge identifications given by translations.

Torus

- Genus 1
- Flat geometry everywhere.

Octagon

Regular Octagon:

Octagon

Regular Octagon:

- Genus 2

Octagon

Regular Octagon:

- Genus 2
- Single cone point of angle 6π

Doubled slit torus construction

Take a flat torus and mark two points

Take an identical copy of the twice-marked torus

Cut a slit between the marked points

Glue opposite sides of the slit together

Doubled Slit Torus

Doubled Slit Torus

Genus 2 surface

Doubled Slit Torus

Genus 2 surface
2 cone type singularities of angle 4π

Doubled Slit Torus

Genus 2 surface
2 cone type singularities of angle 4π

Doubled Slit Torus

Genus 2 surface
2 cone type singularities of angle 4π

Doubled Slit Torus

Genus 2 surface
2 cone type singularities of angle 4π

Doubled Slit Torus

Genus 2 surface
2 cone type singularities of angle 4π

Why doubled slit tori?

(Topology)

Are a natural construction of a higher genus surface from genus 1 surfaces.

Why doubled slit tori?

(Topology)

Are a natural construction of a higher genus surface from genus 1 surfaces.

(Dynamics)

First higher genus surface with minimal but not uniquely ergodic straight-line flow.

Why doubled slit tori?

(Topology)

Are a natural construction of a higher genus surface from genus 1 surfaces.
(Dynamics)
First higher genus surface with minimal but not uniquely ergodic straight-line flow.
(Geometry)
Are examples of translation surfaces.

Translation structure

Embedding into complex plane endows the surface with a Riemann surface structure X

Translation structure

Embedding into complex plane endows the surface with a Riemann surface structure X and the holomorphic differential $d z$.

Translation surfaces

More generally any pair (X, ω) where X is a Riemann surface and ω is a non-zero holomorphic differential is called a translation surface.

Translation surfaces

More generally any pair (X, ω) where X is a Riemann surface and ω is a non-zero holomorphic differential is called a translation surface.

The holomorphic differential allows us to measure lengths and gives a sense of direction.

We are interested in paths on doubled slit tori

A saddle connection is a straight-line trajectory starting and ending at a cone type singularity.

Associated to each saddle connection is the holonomy vector.

Associated to each saddle connection is the holonomy vector.

$$
\int_{\gamma} d z=4+i
$$

Associated to each saddle connection is the holonomy vector.

$$
\int_{\gamma} d z=4+i \text { or }\binom{4}{1}
$$

$$
\int_{\delta} d z=1+0 i \text { or }\binom{1}{0}
$$

$$
\int_{\gamma} d z=4+i \text { or }\binom{4}{1} \quad \text { and } \quad \int_{\delta} d z=1+0 i \text { or }\binom{1}{0}
$$

Let Λ_{ω} denote the set of all holonomy vectors.
Λ_{ω}

Let Λ_{ω} denote the set of all holonomy vectors.

$$
\begin{array}{ccc|ccc}
x & x & x & x & & x \\
x & x & x & & x & x \\
x & x & x & x & x \\
\hline x & x & x & x & & \\
\hline x & x & & x & x & x \\
x & x & x & & x
\end{array}
$$

Discreteness

Let Λ_{ω} denote the set of all holonomy vectors.

Veech: Λ_{ω} is a discrete subset!
Λ_{ω}

How random are the holonomy vectors?

How random are the holonomy vectors?

Angles as a test of randomness

Angles as a test of randomness

Angles as a test of randomness

- Masur: angles are dense

Angles as a test of randomness

- Masur: angles are dense
- Vorobets: angles are equidistributed for almost every translation surface

Angles as a test of randomness

- Masur: angles are dense
- Vorobets: angles are equidistributed for almost every translation surface
- Eskin-Marklof-Morris: angles are equidistributed for covers of lattices surfaces

Upshot: Saddle connections appear to behave randomly at first glance.

A second test of randomness

A second test of randomness is to consider gaps of sequences.

A second test of randomness

A second test of randomness is to consider gaps of sequences.

We consider slopes of saddle connections instead of angles.

Slopes of holonomy vectors

Let Slopes ${ }^{R}\left(\Lambda_{\omega}\right)$ denote the slopes in an eighth sector up to length R.

Slopes of holonomy vectors

Let Slopes ${ }^{R}\left(\Lambda_{\omega}\right)$ denote the slopes in an eighth sector up to length R.
$\operatorname{Slopes}^{R}\left(\Lambda_{\omega}\right)=\left\{s_{0}=0<s_{1}<\cdots<s_{N(R)}\right\}$
where $N(R)=\mid$ Slopes $^{R}\left(\Lambda_{\omega}\right) \mid$.

Slopes of holonomy vectors

Gaps of holonomy vectors

Consider the gaps of slopes

$$
\operatorname{Gaps}^{R}\left(\Lambda_{\omega}\right)=\left\{\left(s_{i}-s_{i-1}\right) \mid i=1, \ldots, N(R)\right\}
$$

Gaps of holonomy vectors

Consider the gaps of slopes

$$
\operatorname{Gaps}^{R}\left(\Lambda_{\omega}\right)=\left\{R^{2}\left(s_{i}-s_{i-1}\right) \mid i=1, \ldots, N(R)\right\}
$$

Gaps of holonomy vectors

Consider the gaps of slopes

$$
\operatorname{Gaps}^{R}\left(\Lambda_{\omega}\right)=\left\{R^{2}\left(s_{i}-s_{i-1}\right) \mid i=1, \ldots, N(R)\right\}
$$

What can we say about the distribution of gaps?

Gap distribution

The gap distribution is given by

$$
\operatorname{Gaps}^{R}\left(\Lambda_{\omega}\right)
$$

Gap distribution

The gap distribution is given by

$$
\operatorname{Gaps}^{R}\left(\Lambda_{\omega}\right) \cap I
$$

Gap distribution

The gap distribution is given by

$$
\left|\operatorname{Gaps}^{R}\left(\Lambda_{\omega}\right) \cap I\right|
$$

Gap distribution

The gap distribution is given by

$$
\frac{\left|\operatorname{Gaps}^{R}\left(\Lambda_{\omega}\right) \cap I\right|}{N(R)}
$$

Gap distribution

The gap distribution is given by

$$
\lim _{R \rightarrow \infty} \frac{\left|\operatorname{Gaps}^{R}\left(\Lambda_{\omega}\right) \cap I\right|}{N(R)}
$$

Gap distribution

The gap distribution is given by

$$
\lim _{R \rightarrow \infty} \frac{\left|\operatorname{Gaps}^{R}\left(\Lambda_{\omega}\right) \cap I\right|}{N(R)}
$$

This measures the proportion of gaps in an interval I.

Gap distribution

The gap distribution is given by

$$
\lim _{R \rightarrow \infty} \frac{\left|\operatorname{Gaps}^{R}\left(\Lambda_{\omega}\right) \cap I\right|}{N(R)}
$$

This measures the proportion of gaps in an interval I.

What can we say about this limit? What do we expect?

Context from probability

Suppose that $\left(X_{i}\right)_{i=1}^{\infty}$ are a sequence of IID random variables uniformly distributed on $[0,1]$.

Context from probability

Suppose that $\left(X_{i}\right)_{i=1}^{\infty}$ are a sequence of IID random variables uniformly distributed on $[0,1]$.

Context from probability

Suppose that $\left(X_{i}\right)_{i=1}^{\infty}$ are a sequence of IID random variables uniformly distributed on $[0,1]$.

$\operatorname{Gaps}\left\{\left(X_{i}\right)_{i=1}^{n}\right\}$

Context from probability

Suppose that $\left(X_{i}\right)_{i=1}^{\infty}$ are a sequence of IID random variables uniformly distributed on $[0,1]$.

$\left|\operatorname{Gaps}\left\{\left(X_{i}\right)_{i=1}^{n}\right\} \cap I\right|$
n

Context from probability

Suppose that $\left(X_{i}\right)_{i=1}^{\infty}$ are a sequence of IID random variables uniformly distributed on [0,1].
The associated gaps are exponential.

Theorem (S. 2020)

The gap distribution of almost every doubled slit torus is not exponential.

$$
(X, \omega)
$$

Theorem (S. 2020)

There exists a density function f so that
$\lim _{R \rightarrow \infty} \frac{\left|\operatorname{Gaps}^{R}\left(\Lambda_{\omega}\right) \cap I\right|}{N(R)}=\int_{I} f(x) d x$
for almost every doubled slit torus.

Large gaps

The gap distribution has a quadratic tail:

$$
\int_{t}^{\infty} f(x) d x \sim t^{-2}
$$

Large gaps

The gap distribution has a quadratic tail:

$$
\int_{t}^{\infty} f(x) d x \sim t^{-2}
$$

Large gaps

The gap distribution has a quadratic tail:

$$
\int_{t}^{\infty} f(x) d x \sim t^{-2} . \quad \int_{t}^{\infty} e^{-x} d x=e^{-t}
$$

Compare with the IID case:

Thus, large gaps are unlikely, but still much more likely than the random case!

Small gaps

The gap distribution has support at zero:

$$
\int_{0}^{\varepsilon} f(x) d x>0
$$

for every $\varepsilon>0$.

Small gaps

The gap distribution has support at zero:

This is expected since doubled slit tori are not lattice surfaces.

$$
\int_{0}^{\varepsilon} f(x) d x>0
$$

for every $\varepsilon>0$.

Higher genus

These surfaces are called symmetric torus covers.

Higher genus

These surfaces are called symmetric torus covers.

Symmetric torus covers have the same gap distribution as doubled slit tori.

Other results on gaps of translation surfaces

- Lattice surfaces (highly symmetric translation surfaces)
- Non-lattice surfaces

Gaps of lattice surfaces

- Athreya-Cheung (2014) - Torus
- Athreya-Chaika-Lelievre (2015) Golden L
- Uyanik-Work (2016) - Regular octagon
- Taha (2020)- Gluing two regular (2n+1)-gons

Gaps of lattice surfaces

- Athreya-Cheung (2014) - Torus
- Athreya-Chaika-Lelievre (2015) Golden L
- Uyanik-Work (2016) - Regular octagon
- Taha (2020)- Gluing two regular (2n+1)-gons

Characteristics of the gap distributions:

- No small gaps
- 2-dimensional parameter space
- Explicit gap distributions

Gaps of non-lattice surfaces

Athreya-Chaika (2012) - Generic translation surfaces

- Gap distribution exists for a.e. translation surface and is the same
- Non-explicit
- Small gaps characterize non-lattice surfaces

Gaps of non-lattice surfaces

Athreya-Chaika (2012) - Generic translation surfaces

- Gap distribution exists for a.e. translation surface and is the same
- Non-explicit
- Small gaps characterize non-lattice surfaces

Work (2019) - \mathcal{H} (2) Genus 2 , single cone point

- Parameter space 6-dimensional
- Non-explicit

Gaps of non-lattice surfaces

Athreya-Chaika (2012) - Generic translation surfaces

- Gap distribution exists for a.e. translation surface and is the same
- Non-explicit
- Small gaps characterize non-lattice surfaces

Work (2019) - \mathcal{H} (2) Genus 2 , single cone point

- Parameter space 6-dimensional
- Non-explicit
S. (2020) - Doubled slit tori
- Parameter space 4-dimensional
- First explicit gap distribution for non-lattice surface

Thank youn!

This concludes Part 1
\mathbf{W}

Part 2: Elements of proof

Anthony Sanchez
 asanch33@uw.edu

May 14 ${ }^{\text {th }}, 2020$

Elements of the proof

- Turn gap question into a dynamical question
- On return times and affine lattices

Guiding philosophy

Questions about a fixed translation surface can be understood by considering the dynamics on the space of all translation surfaces.

Guiding philosophy

Questions about a fixed translation surface can be understood by considering the dynamics on the space of all translation surfaces.

Gap distribution of a doubled slit torus

Dynamical question on the space of doubled slit tori

Translation surfaces \mathcal{E}

Let \mathcal{E} denote the set of all doubled slit tori

The $S L(2, \mathbb{R})$-action

There is a "linear" action of $S L(2, \mathbb{R})$ on \mathcal{E}

The $S L(2, \mathbb{R})$-action

There is a "linear" action of $\operatorname{SL}(2, \mathbb{R})$ on \mathcal{E} : act on the polygon presentation

The $S L(2, \mathbb{R})$-action

There is a "linear" action of $\operatorname{SL}(2, \mathbb{R})$ on \mathcal{E} : act on the polygon presentation

The $S L(2, \mathbb{R})$-action

There is a "linear" action of $\operatorname{SL}(2, \mathbb{R})$ on \mathcal{E} : act on the polygon presentation

The $S L(2, \mathbb{R})$-action

There is a "linear" action of $\operatorname{SL}(2, \mathbb{R})$ on \mathcal{E} : act on the polygon presentation

Horocycle flow

Consider the 1-parameter family

$$
\left\{h_{u}=\left(\begin{array}{cc}
1 & 0 \\
-u & 1
\end{array}\right): u \in \mathbb{R}\right\}
$$

Horocycle flow

Consider the 1-parameter family

$$
\left\{h_{u}=\left(\begin{array}{cc}
1 & 0 \\
-u & 1
\end{array}\right): u \in \mathbb{R}\right\}
$$

- Vertical shear on the plane.

Horocycle flow

Consider the 1-parameter family

$$
\left\{h_{u}=\left(\begin{array}{cc}
1 & 0 \\
-u & 1
\end{array}\right): u \in \mathbb{R}\right\}
$$

- Vertical shear on the plane.
- This subgroup is of interest because of how it changes slopes.

Slopes

$$
h_{u}\binom{x}{y}=\binom{x}{y-u x}
$$

Slopes

$$
\left.\begin{array}{rl}
h_{u}\binom{x}{y} & =\binom{x}{y-u x} \\
\downarrow
\end{array}\right)
$$

Slopes

$$
\begin{gathered}
h_{u}\binom{x}{y}=\binom{x}{y-u x} \\
\downarrow \\
\operatorname{slope}\left(h_{u}\binom{x}{y}\right)=\operatorname{slope}\left(\binom{x}{y}\right)-u
\end{gathered}
$$

Slopes

$$
\begin{gathered}
h_{u}\binom{x}{y}=\binom{x}{y-u x} \\
\downarrow \\
\operatorname{slope}\left(h_{u}\binom{x}{y}\right)=\operatorname{slope}\left(\binom{x}{y}\right)-u
\end{gathered}
$$

In particular, slope differences are preserved!

Transversal for doubled slit tori

Consider the transversal for doubled slit tori

$$
\mathcal{W}=\left\{\omega \in \mathcal{E} \mid \Lambda_{\omega} \cap(0,1] \neq \emptyset\right\}
$$

Transversal for doubled slit tori

Consider the transversal for doubled slit tori

$$
\mathcal{W}=\left\{\omega \in \mathcal{E} \mid \Lambda_{\omega} \cap(0,1] \neq \varnothing\right\}
$$

That is, the doubled slit tori that have a short horizontal saddle connection.

Transversal for doubled slit tori

Consider the transversal for doubled slit tori

$$
\mathcal{W}=\left\{\omega \in \mathcal{E} \mid \Lambda_{\omega} \cap(0,1] \neq \emptyset\right\}
$$

That is, the doubled slit tori that have a short horizontal saddle connection.

Transversal for doubled slit tori

Consider the transversal for doubled slit tori

$$
\mathcal{W}=\left\{\omega \in \mathcal{E} \mid \Lambda_{\omega} \cap(0,1] \neq \varnothing\right\}
$$

That is, the doubled slit tori that have a short horizontal saddle connection.

Key: slope gaps = return times to \mathcal{W}

- First return time:

If $\omega \in \mathcal{W}$, when is $h_{u} \omega \in \mathcal{W}$?

Key: slope gaps = return times to \mathcal{W}

- First return time:

If $\omega \in \mathcal{W}$, when is $h_{u} \omega \in \mathcal{W}$?
Need a vector in Λ_{ω} with

$$
h_{u}\binom{x}{y}=\binom{x}{y-u x}
$$

short and horizontal.

Key: slope gaps = return times to \mathcal{W}

- First return time:

If $\omega \in \mathcal{W}$, when is $h_{u} \omega \in \mathcal{W}$?
Need a vector in Λ_{ω} with

$$
h_{u}\binom{x}{y}=\binom{x}{y-u x}
$$

short and horizontal.

- This happens is when

$$
y-u x=0 \Leftrightarrow u=\frac{y}{x}
$$

So the first return time is a slope

So the first return time is a slope

What about the second return time?

Second return time

Second return time $=$ total time minus the first return time

Second return time

Second return time $=$ total time minus the first return time

Hence, second return time is a slope difference.

Formalizing the key idea

Let R denote the return time

Let T denote the return map

Formalizing the key idea

Let R denote the return time

$$
R(\omega)=\inf \left\{u>0 \mid h_{u}(\omega) \in \mathcal{W}\right\}
$$

Let T denote the return map

Formalizing the key idea

Let R denote the return time

$$
R(\omega)=\inf \left\{u>0 \mid h_{u}(\omega) \in \mathcal{W}\right\}
$$

Let T denote the return map

$$
T(\omega)=h_{R(\omega)} \omega
$$

Formalizing the key idea

Let R denote the return time

$$
R(\omega)=\inf \left\{u>0 \mid h_{u}(\omega) \in \mathcal{W}\right\}
$$

Let T denote the return map

$$
T(\omega)=h_{R(\omega)} \omega \in \mathcal{W}
$$

Formalizing the key idea

slope gaps = return times to \mathcal{W}

Formalizing the key idea

slope gaps = return times to \mathcal{W}

$$
\underset{s_{i+1}-s_{i}=R\left(T^{i}(\omega)\right)}{\downarrow}
$$

Slope gaps as a dynamical question

$$
\frac{\left|\operatorname{Gaps}^{N}\left(\Lambda_{\omega}\right) \cap I\right|}{N}
$$

Slope gaps as a dynamical question

$$
\frac{\left|\operatorname{Gaps}^{N}\left(\Lambda_{\omega}\right) \cap I\right|}{N}=\frac{1}{N} \sum_{i=0}^{N-1} \chi_{\left\{R^{-1}(I)\right\}}\left(T^{i}(\omega)\right)
$$

Slope gaps as a dynamical question

$$
\begin{aligned}
\frac{\left|\operatorname{Gaps}^{N}\left(\Lambda_{\omega}\right) \cap I\right|}{N}= & \frac{1}{N} \sum_{i=0}^{N-1} \chi_{\left\{R^{-1}(I)\right\}}\left(T^{i}(\omega)\right) \\
& \rightarrow \mu\{\omega \in \mathcal{W} \mid R(\omega) \in I\}
\end{aligned}
$$

Slope gaps as a dynamical question

$$
\begin{aligned}
\frac{\left|\operatorname{Gaps}^{N}\left(\Lambda_{\omega}\right) \cap I\right|}{N}= & \frac{1}{N} \sum_{i=0}^{N-1} \chi_{\left\{R^{-1}(I)\right\}}\left(T^{i}(\omega)\right) \\
& \rightarrow \mu\{\omega \in \mathcal{W} \mid R(\omega) \in I\}
\end{aligned}
$$

So next steps:

- parametrize \mathcal{W}
- find return map in coordinates

Part 2: Finding the return time

Return time = slope of the next vector to become short

Part 2: Finding the return time

Return time = slope of the next vector to become short

The rest of the talk we will only concern ourselves with vectors of smallest positive slope

Understanding saddle connections

Understanding saddle connections

\uparrow

$$
\mathbb{C} / \mathbb{Z}^{2},\binom{1 / 2}{1 / 2}
$$

Understanding saddle connections

Two types of saddle connections

- \mathbb{Z}^{2}

$$
\mathbb{C} / \mathbb{Z}^{2},\binom{1 / 2}{1 / 2}
$$

Understanding saddle connections

Two types of saddle connections

- \mathbb{Z}^{2}
- $\mathbb{Z}^{2}+\binom{1 / 2}{1 / 2}$

$$
\mathbb{C} / \mathbb{Z}^{2} \cdot\binom{1 / 2}{1 / 2}
$$

$$
\begin{gathered}
\uparrow \\
\mathbb{C} / g \mathbb{Z}^{2}, v
\end{gathered}
$$

Two types of saddle connections

- $g \mathbb{Z}^{2}$

Two types of saddle connections

- $g \mathbb{Z}^{2}$
\downarrow

Understood by torus results

$$
\mathbb{C}_{g \mathbb{Z}^{2}}, v
$$

Two types of saddle connections

- $g \mathbb{Z}^{2}$

Understood by torus results

- $g \mathbb{Z}^{2}+v$

$$
\mathbb{C}_{g \mathbb{Z}^{2}}, v
$$

Two types of saddle connections

- $g \mathbb{Z}^{2}$ \square

Understood by torus results

- $g \mathbb{Z}^{2}+v$

$$
\begin{gathered}
\uparrow \\
\mathbb{C} / g_{\mathbb{z}^{2}}, v
\end{gathered}
$$

Parameterizing affine lattices

$$
\Lambda=g \mathbb{Z}^{2}+v
$$

Data needed for an affine lattice
$\Lambda=g \mathbb{Z}^{2}+v$ is

- lattice $g \in S L(2, \mathbb{R})$
- vector $v \in \mathbb{C} / g \mathbb{Z}^{2}$

$$
\Lambda=g \mathbb{Z}^{2}+v
$$

Given an affine lattice $\Lambda=g \mathbb{Z}^{2}+v$, what is the short vector of smallest slope?

A special case

Consider the affine lattices of the form

$$
\Lambda=\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right) \mathbb{Z}^{2}+\binom{\alpha}{0} .
$$

What are the vectors of smallest slope?

$$
\Lambda=\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right) \mathbb{Z}^{2}+\binom{a}{0}
$$

At every height, can have at most one vector in a unit length interval.

Strategy for $\Lambda=\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right) \mathbb{Z}^{2}+\binom{\alpha}{0}$
 So to find vector of smallest non-zero slope
 - Consider the affine vector $\binom{\alpha}{0}$.
 - Use structure of the lattice and track how slope changes

Strategy for $\Lambda=\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right) \mathbb{Z}^{2}+\binom{\alpha}{0}$

So to find vector of smallest non-zero slope

- Consider the affine vector $\binom{\alpha}{0}$.
- Use structure of the lattice and track how slope changes

Short vectors of $\Lambda=\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right) \mathbb{Z}^{2}+\binom{\alpha}{0}$

The next vector to become short

$$
\left\{\begin{array}{c}
\binom{\alpha}{0}+\text { second basis vector, } \quad \text { if } b+\alpha<1 \\
\binom{\alpha}{0}-\text { first basis vector }+(\text { many }) \text { second basis }, \quad \text { if } b+\alpha>1
\end{array}\right.
$$

Short vectors of $\Lambda=\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right) \mathbb{Z}^{2}+\binom{\alpha}{0}$

The next vector to become short

$$
\begin{cases}\binom{b+\alpha}{1}, & \text { if } b+\alpha<1 \\ \binom{j b+\alpha-1}{\mathrm{j}}, & \text { if } b+\alpha>1\end{cases}
$$

where $j=\left\lfloor\frac{2-\alpha}{b}\right\rfloor$

Elements of the proof

- This idea (with some modifications) is used to find holonomy vectors of doubled slit tori of smallest slope

Elements of the proof

- This idea (with some modifications) is used to find holonomy vectors of doubled slit tori of smallest slope
- These are the return times to the transversal

Elements of the proof

- This idea (with some modifications) is used to find holonomy vectors of doubled slit tori of smallest slope
- These are the return times to the transversal
- This answer answers the gap distribution question for doubled slit tori

Special thanks to:

- Dr. Jayadev Athreya (My advisor)
- West Coast Dynamics Seminar

