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Translation surfaces

A translation surface is a collection of polygons with edge
identifications given by translations.
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Translation surfaces

A translation surface is a collection of polygons with edge
identifications given by translations.

Torus
* Genusl
- + * Flat geometry everywhere.




Octagon

Regular Octagon:




Octagon

Regular Octagon:

* Genus 2




Octagon

Regular Octagon:
* Genus 2

* Single cone point of angle 6




Doubled slit torus construction

Take a flat torus and mark two points




Take an identical copy of the twice-marked torus

[777




Cut a slit between the marked points




Glue opposite sides of the slit together

L/ L]




Doubled Slit Torus
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Doubled Slit Torus
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Genus 2 surface

2 cone type singularities of angle 4n




Why doubled slit tori?

(Topology)

Are a natural construction of a higher genus surface from genus 1
surfaces.
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Why doubled slit tori?

(Topology)
Are a natural construction of a higher genus surface from genus 1
surfaces.

(Dynamics)

First higher genus surface with minimal but not uniquely ergodic
straight-line flow.

(Geometry)
Are examples of translation surfaces.




Translation structure

Embedding into complex plane endows the surface with a Riemann
surface structure X




Translation structure

Embedding into complex plane endows the surface with a Riemann
surface structure X and the holomorphic differential dz.




Translation surfaces

More generally any pair (X, w) where X is a Riemann surface and w is a
non-zero holomorphic differential is called a translation surface.




Translation surfaces

More generally any pair (X, w) where X is a Riemann surface and w is a
non-zero holomorphic differential is called a translation surface.

The holomorphic differential allows us to measure lengths and gives a
sense of direction.




We are interested in paths on doubled slit tori




A saddle connection is a straight-line trajectory starting and ending at a
cone type singularity.




Associated to each saddle connection is the holonomy vector.
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Associated to each saddle connection is the holonomy vector.

f, dz=4+ior(‘1l)
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fy dz=4+ior(;}) and [ dz=1+0ior((1))




Let A, denote the set of all
holonomy vectors.




Let A, denote the set of all
holonomy vectors.




Discreteness

Let A, denote the set of all
holonomy vectors.

Veech: A, is a discrete subset!




How random are the holonomy vectors?

Ay,
(X; (,()) X )k X
X X X
X X
Xy X
X X X X
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- M X X X X X
X
X X X
X X




How ranNdom are the holonomy vectors?

Ay,
(X; (,()) X )k X
X X X
X X
X X
X X X X
- _ Ay y 7a\
_ M X X X X X
X
X X X
X X
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Angles as a test of randomness

‘  Masur: angles are dense

 \Vorobets: angles are equidistributed
for almost every translation surface

* Eskin-Marklof-Morris: angles are
equidistributed for covers of lattices
~ surfaces




Upshot: Saddle connections appear to
behave randomly at first glance.




A second test of randomness

A second test of randomness is to consider gaps of sequences.




A second test of randomness

A second test of randomness is to consider gaps of sequences.

We consider slopes of saddle connections instead of angles.




Slopes of holonomy vectors

Let Slopes®(A,,) denote the slopes in an
eighth sector up to length R.
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Ay
Let Slopes®(A,) denote the slopes in an
X X X eighth sector up to length R.
X X
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Slopes of holonomy vectors

Ay,
Let Slopes®(A,) denote the slopes in an
X X X eighth sector up to length R.
X X
X X ?( SN(R) SlOpeSR(Aw) — {SO =0< S1 < < SN(R)}
X X 5.y, where N(R) = |Slopes®(A,)].
X __Jf::)—(:rsl
Eskin-Masur showed N(R) ~ R“.




Gaps of holonomy vectors

Consider the gaps of slopes

Gaps®(Ay) ={ (si—si-)|i=1,..,N(R)}




Gaps of holonomy vectors

Consider the gaps of slopes

Gaps®(Ay) = {R*(s; —si—1)|i=1,..,N(R) }




Gaps of holonomy vectors

Consider the gaps of slopes

Gaps®(Ay,) ={R*(s; —si—)|i=1,..,N(R) }

What can we say about the distribution of gaps?
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Gap distribution

The gap distribution is given by

’ |Gaps®(A,) N 1|
Roser N(R)

This measures the proportion of gaps in an interval I.

What can we say about this limit? What do we expect?
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Suppose that (X;);2, are a sequence of IID random variables
uniformly distributed on [0,1].
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Context from probability

Suppose that (X;);2, are a sequence of IID random variables
uniformly distributed on [0,1].

The associated gaps are exponential.

| | | \Gaps{(Xi)?zl}nI‘ _
>
0 )|<3 )|(1 x2 j|- n j.l e dx




Theorem (S. 2020)

The gap distribution of almost every doubled slit torus is not exponential.

(X,(U) Aw
X X X
X X X
X X
X X
+ B X X X X
— + X y 7al
X
X X X X
X
X X X
X X




Theorem (S. 2020)

There exists a density function f so that

lim |GapsR(Ay)NI|

R—o N(R)

= [ f(x) dx

for almost every doubled slit torus.




Large gaps

The gap distribution has a quadratic
tail:

foof(x) dx ~t2.
t
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Large gaps

The gap distribution has a quadratic Compare with the IID case:
tail:

ftf(x)dvat_z. fe‘xdx=e_t.
t

Thus, large gaps are unlikely, but still
much more likely than the random case!




Small gaps

The gap distribution has support at
zero:

fgf(x) dx >0
0

for every € > 0.




Small gaps

The gap distribution has support at This is expected since doubled
Zero. slit tori are not lattice surfaces.

jef(x) dx >0
0

for every € > 0.




Higher genus

ks

These surfaces are called symmetric torus covers.




Higher genus

i

These surfaces are called symmetric torus covers.

Symmetric torus covers have the same gap distribution as doubled slit
tori.




Other results on gaps of translation surfaces

* Lattice surfaces (highly symmetric * Non-lattice surfaces
translation surfaces)

N LT

NI




Gaps of lattice surfaces

* Athreya-Cheung (2014) - Torus

e Athreya-Chaika-Lelievre (2015) -
Golden L

e Uyanik-Work (2016) - Regular
octagon

* Taha (2020)- Gluing two regular [

(2n+1)-gons

6l




Gaps of lattice surfaces

* Athreya-Cheung (2014) - Torus Characteristics of the gap distributions:
e Athreya-Chaika-Lelievre (2015)- ¢ No small gaps

Golden L  2-dimensional parameter space
e Uyanik-Work (2016) - Regular * Explicit gap distributions
octagon

* Taha (2020)- Gluing two regular
(2n+1)-gons ‘

a s




Gaps of non-lattice surfaces

Athreya-Chaika (2012) — Generic translation surfaces
 Gap distribution exists for a.e. translation surface and is the same
* Non-explicit
 Small gaps characterize non-lattice surfaces
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Gaps of non-lattice surfaces

Athreya-Chaika (2012) — Generic translation surfaces
 Gap distribution exists for a.e. translation surface and is the same
* Non-explicit
 Small gaps characterize non-lattice surfaces

Work (2019) — H (2) Genus 2, single cone point
e Parameter space 6-dimensional
* Non-explicit

S. (2020) — Doubled slit tori

 Parameter space 4-dimensional
* First explicit gap distribution for AN

non-lattice surface
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This concludes Part 1







Elements of the proof

* Turn gap question into a dynamical
guestion

* On return times and affine lattices




Guiding philosophy

Questions about a fixed translation surface can be understood by
considering the dynamics on the space of all translation surfaces.




Guiding philosophy

Questions about a fixed translation surface can be understood by
considering the dynamics on the space of all translation surfaces.

Gap distribution Dynamical

of a doubled slit — question on the

space of doubled

torus
slit tori




Translation surfaces &

Let £ denote the set of all doubled slit tori

NNy,
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The SL(2, R)-action

There is a “linear” action of SL(2,R) on &:
act on the polygon presentation

S




Horocycle flow

Consider the 1-parameter family

(= (G p)ruer)




Horocycle flow

Consider the 1-parameter family
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 Vertical shear on the plane.




Horocycle flow

Consider the 1-parameter family

(h=(Cy 1)iuer]

 Vertical shear on the plane.
* This subgroup is of interest because of how it changes slopes.




Slopes
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Slopes




Slopes

stope ( (5)) = stove ;) ) -

In particular, slope differences are preserved!
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Consider the transversal for doubled slit tori

W = {wek|A, N (0,1] # ¢}

That is, the doubled slit tori that have a short
horizontal saddle connection.




Transversal for doubled slit tori A,

Consider the transversal for doubled slit tori Xy X X y X
X X X X
W = {we€|A, N (0,1] # @} X
X X X X
X VAN
That is, the doubled slit tori that have a short X v X «
horizontal saddle connection. y X X
X X X
X X




Transversal for doubled slit tori

Consider the transversal for doubled slit tori

W = {wek|A, N (0,1] # ¢}

That is, the doubled slit tori that have a short
horizontal saddle connection.
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Key: slope gaps = return times to W

A * First return time:

00 :

If weW, when is h, weW?
)k X Need a vector in A, with
X X\ X
X oy (y) B (y — ux)
X X short and horizontal.
X X
A




Key: slope gaps = return times to W

* First return time:
If weW, when is h, weW?

Need a vector in A, with

o, (;) - (y —xux)

short and horizontal.
* This happens is when

y—ux =0 u=

= <L




So the first return time is a slope




So the first return time is a slope

What about the second return time?




Second return time

)k X Second return time = total time minus the
first return time




Second return time

)k X Second return time = total time minus the
first return time

X X X Hence, second return time is a slope
difference.




Formalizing the key idea

Let R denote the return time

Let T denote the return map
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Let R denote the return time
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Let T denote the return map

T(a)) — hR(w)a)




Formalizing the key idea

Let R denote the return time
R(w) = inf{u > 0|h,(w) € W}

Let T denote the return map

T(w) = hR(w)w ew




Formalizing the key idea
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Formalizing the key idea

slope gaps = return times to W

}

Si+1 —Si = R (Ti(w))




Slope gaps as a dynamical question

|Gaps™ (4,) N1

N




Slope gaps as a dynamical question

GapsV Aw NIl 1% |
|Gaps™ (Ay,) | _ Nz 1(1)}(T‘(a)))
=0




Slope gaps as a dynamical question

N—1
|Gaps™ (A,) N1 1

N N 2. K-y @)

i=0
- u{weW |R(w) € I}




Slope gaps as a dynamical question

|GapsN (A, ) NI 1 -« l.
N = N z X{R—l(l)}(T (w))
i=0

- u{weW |R(w) € I}

So next steps:
* parametrize W
* find return map in coordinates




Part 2: Finding the return time

Return time = slope of the Y X
next vector to become
short X
X X X
X X




Part 2: Finding the return time

Return time = slope of the Y X
next vector to become
short

The rest of the talk we will
only concern ourselves X X
with vectors of smallest
positive slope \Y:




Understanding saddle connections
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Two types of saddle connections
° gZz

+ —
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Two types of saddle connections
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Understood by torus results
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Two types of saddle connections

° gZZ l

Understood by torus results
« gZ¢+v

}

Defines an affine lattice!




Parameterizing affine lattices ,
— A=gZl-+v.

Data needed for an affine lattice / / / / /

A=gZ?+vis / X/ X/ X/ X/
e lattice g € SL(2, R)

e vector v € C/ g Z* / X X/ X/ X/




Given an affine lattice A = gZ* + v, / / / / /
what is the short vector of smallest X X X X
slope?




A special case

Consider the affine lattices of the
form

1=(p 1)7+(o)

What are the vectors of smallest
slope?




1=, 12+ (o)

At every height,

canhaveatmost [ | [ [ | ]

one vector in a
unit length
interval.




Strategy for A = ((1)

So to find vector of smallest
non-zero slope

e Consider the affine vector
(o)
0):

e Use structure of the lattice
and track how slope changes




Strategy for A = (1

So to find vector of smallest
non-zero slope

e Consider the affine vector
(o)
0):

e Use structure of the lattice

and track how slope changes / / / / /

S/




Short vectors of A = ((1) Ii) 7% + (g)

The next vector to become short

(g) + second basis vector, ifbt+a<l1

(g) — first basis vector + (many) second basis, ifb+a>1




Short vectors of A = ((1) Ii) 7% + (g)

The next vector to become short
((b+ « .
<( 1 ), ifb+a<l1
(]b+ja_1), if b+a>1
\

where j = {Z_Ta
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* This idea (with some modifications) is used to find
holonomy vectors of doubled slit tori of smallest slope
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Elements of the proof

* This idea (with some modifications) is used to find
holonomy vectors of doubled slit tori of smallest slope

e These are the return times to the transversal

* This answer answers the gap distribution question for
doubled slit tori
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Special thanks to:
 Dr. Jayadev Athreya (My advisor)
* West Coast Dynamics Seminar




