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Translation surfaces

A translation surface is a collection of polygons with edge 
identifications given by translations.

Torus
• Genus 1
• Flat geometry everywhere. 
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Octagon

Regular Octagon:

• Genus 2

• Single cone point of angle 6𝜋



Doubled slit torus construction

Take a flat torus and mark two points



Take an identical copy of the twice-marked torus



Cut a slit between the marked points



Glue opposite sides of the slit together 
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Why doubled slit tori?

(Topology) 

Are a natural construction of a higher genus surface from genus 1 
surfaces.

(Dynamics)

First higher genus surface with minimal but not uniquely ergodic 
straight-line flow. 

(Geometry)

Are examples of translation surfaces.
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Embedding into complex plane endows the surface with a Riemann 
surface structure 𝑋 and the holomorphic differential 𝑑𝑧. 
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Translation surfaces

More generally any pair 𝑋,𝜔 where 𝑋 is a Riemann surface and 𝜔 is a 
non-zero holomorphic differential is called a translation surface.

The holomorphic differential allows us to measure lengths and gives a 
sense of direction.



We are interested in paths on doubled slit tori



A saddle connection is a straight-line trajectory starting and ending at a 
cone type singularity.
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Let 𝛬𝜔 denote the set of all 
holonomy vectors.

Veech: 𝛬𝜔 is a discrete subset!

𝛬𝜔Discreteness
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Angles as a test of randomness

• Masur: angles are dense

• Vorobets: angles are equidistributed
for almost every translation surface

• Eskin-Marklof-Morris: angles are 
equidistributed for covers of lattices 
surfaces



Upshot: Saddle connections appear to 
behave randomly at first glance.
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A second test of randomness

A second test of randomness is to consider gaps of sequences.

We consider slopes of saddle connections instead of angles.
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Slopes of holonomy vectors

Let 𝑆𝑙𝑜𝑝𝑒𝑠𝑅 𝛬𝜔 denote the slopes in an 
eighth sector up to length 𝑅.

𝑆𝑙𝑜𝑝𝑒𝑠𝑅 𝛬𝜔 = 𝑠0 = 0 < 𝑠1 < ⋯ < 𝑠𝑁(𝑅)

where 𝑁 𝑅 = |𝑆𝑙𝑜𝑝𝑒𝑠𝑅 𝛬𝜔 |.

Eskin-Masur showed 𝑁 𝑅 ~ 𝑅2.

𝛬𝜔



Gaps of holonomy vectors

Consider the gaps of slopes
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Gaps of holonomy vectors

Consider the gaps of slopes

𝐺𝑎𝑝𝑠𝑅 𝛬𝜔 = 𝑅2(𝑠𝑖 − 𝑠𝑖−1)| 𝑖 = 1,… , 𝑁(𝑅)



Gaps of holonomy vectors

Consider the gaps of slopes

𝐺𝑎𝑝𝑠𝑅 𝛬𝜔 = 𝑅2(𝑠𝑖 − 𝑠𝑖−1)| 𝑖 = 1,… , 𝑁(𝑅)

What can we say about the distribution of gaps?
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Gap distribution

The gap distribution is given by

𝑙𝑖𝑚
𝑅→∞

𝐺𝑎𝑝𝑠𝑅 𝛬𝜔 ∩ 𝐼

𝑁(𝑅)

This measures the proportion of gaps in an interval 𝐼.

What can we say about this limit? What do we expect?
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Context from probability

Suppose that 𝑋𝑖 𝑖=1
∞ are a sequence of IID random variables 

uniformly distributed on [0,1]. 

The associated gaps are exponential.

𝐺𝑎𝑝𝑠{ 𝑋𝑖 𝑖=1
𝑛 }∩𝐼

𝑛
→ I 𝑒

−𝑥 𝑑𝑥



The gap distribution of almost every doubled slit torus is not exponential.

Theorem (S. 2020) 

𝛬𝜔𝑋,𝜔



There exists a density function 𝑓 so that

𝑙𝑖𝑚
𝑅→∞

𝐺𝑎𝑝𝑠𝑅 𝛬𝜔 ∩𝐼

𝑁(𝑅)
𝐼 = 𝑓 𝑥 𝑑𝑥

for almost every doubled slit torus.

Theorem (S. 2020)
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The gap distribution has a quadratic 
tail:

න
𝑡

∞

𝑓 𝑥 𝑑𝑥 ~𝑡−2.

Compare with the IID case:

න
𝑡

∞

𝑒−𝑥𝑑𝑥 = 𝑒−𝑡 .

Large gaps

Thus, large gaps are unlikely, but still 
much more likely than the random case!



The gap distribution has support at 
zero:

න
0
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for every 휀 > 0.
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The gap distribution has support at 
zero:

න
0

𝑓 𝑥 𝑑𝑥 > 0

for every 휀 > 0.

Small gaps

This is expected since doubled 
slit tori are not lattice surfaces.



Higher genus

These surfaces are called symmetric torus covers.



Symmetric torus covers have the same gap distribution as doubled slit 
tori.

Higher genus

These surfaces are called symmetric torus covers.



Other results on gaps of translation surfaces

• Non-lattice surfaces• Lattice surfaces (highly symmetric 
translation surfaces)



Gaps of lattice surfaces

• Athreya-Cheung (2014) - Torus

• Athreya-Chaika-Lelievre (2015) -
Golden L

• Uyanik-Work (2016) - Regular 
octagon

• Taha (2020)- Gluing two regular 
(2n+1)-gons



Gaps of lattice surfaces

• Athreya-Cheung (2014) - Torus

• Athreya-Chaika-Lelievre (2015) -
Golden L

• Uyanik-Work (2016) - Regular 
octagon

• Taha (2020)- Gluing two regular 
(2n+1)-gons

Characteristics of the gap distributions:
• No small gaps
• 2-dimensional parameter space
• Explicit gap distributions
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Gaps of non-lattice surfaces

Work (2019) – ℋ 2 Genus 2, single cone point
• Parameter space 6-dimensional

• Non-explicit

Athreya-Chaika (2012) – Generic translation surfaces
• Gap distribution exists for a.e. translation surface and is the same
• Non-explicit
• Small gaps characterize non-lattice surfaces

S. (2020) – Doubled slit tori
• Parameter space 4-dimensional
• First explicit gap distribution for

non-lattice surface



This concludes Part 1
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Elements of the proof

• Turn gap question into a dynamical 
question

•On return times and affine lattices



Guiding philosophy

Questions about a fixed translation surface can be understood by 
considering the dynamics on the space of all translation surfaces.



Guiding philosophy

Questions about a fixed translation surface can be understood by 
considering the dynamics on the space of all translation surfaces.

Dynamical 
question on the 
space of doubled 
slit tori

Gap distribution 
of a doubled slit 
torus



Translation surfaces ℰ

Let ℰ denote the set of all doubled slit tori
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Horocycle flow

Consider the 1-parameter family

ℎ𝑢 =
1 0
−𝑢 1

: 𝑢 ∈ ℝ

• Vertical shear on the plane. 

• This subgroup is of interest because of how it changes slopes.
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Slopes
ℎ𝑢

𝑥
𝑦 =

𝑥
𝑦 − 𝑢𝑥

𝑠𝑙𝑜𝑝𝑒 ℎ𝑢
𝑥
𝑦 = 𝑠𝑙𝑜𝑝𝑒

𝑥
𝑦 − 𝑢

In particular, slope differences are preserved!
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Key: slope gaps = return times to 𝒲

• First return time:

If 𝜔𝜖𝒲, when is ℎ𝑢𝜔𝜖𝒲? 

Need a vector in 𝛬𝜔 with

ℎ𝑢
𝑥
𝑦 =

𝑥
𝑦 − 𝑢𝑥

short and horizontal.

• This happens is when

𝑦 − 𝑢𝑥 = 0 ⇔ 𝑢 =
𝑦

𝑥

𝛬𝜔
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So the first return time is a slope

What about the second return time?



Second return time = total time minus the 
first return time

Second return time
𝛬𝜔



Second return time = total time minus the 
first return time

Hence, second return time is a slope 
difference.

Second return time
𝛬𝜔
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Let 𝑅 denote the return time

𝑅 𝜔 = inf 𝑢 > |0 ℎ𝑢 𝜔 ∈ 𝒲

Let  𝑇 denote the return map

𝑇 𝜔 = ℎ𝑅 𝜔 𝜔 ∈ 𝒲



Formalizing the key idea

slope gaps = return times to 𝒲



Formalizing the key idea

slope gaps = return times to 𝒲

𝑠𝑖+1 − 𝑠𝑖 = 𝑅 𝑇𝑖 𝜔
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=
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Slope gaps as a dynamical question

𝐺𝑎𝑝𝑠𝑁 𝛬𝜔 ∩ 𝐼

𝑁
=
1

𝑁


𝑖=0

𝑁−1

𝜒 𝑅−1 𝐼 (𝑇𝑖 𝜔 )

→𝜇 𝜔 |𝜖𝒲 𝑅 𝜔 ∈ 𝐼

So next steps:
• parametrize 𝒲
• find return map in coordinates
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Part 2: Finding the return time

Return time = slope of the 
next vector to become 
short

The rest of the talk we will 
only concern ourselves 
with vectors of smallest 
positive slope
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Two types of saddle connections

• 𝑔ℤ2

Understood by torus results

• 𝑔ℤ2 + 𝑣

Defines an affine lattice!



Parameterizing affine lattices

Data needed for an affine lattice

𝛬 = 𝑔ℤ2 + 𝑣 is

• lattice 𝑔 ∈ 𝑆𝐿 2,ℝ

• vector 𝑣 ∈ Τℂ 𝑔 ℤ2

𝛬 = 𝑔ℤ2 + 𝑣.



Given an affine lattice 𝛬 = 𝑔ℤ2 + 𝑣, 
what is the short vector of smallest 
slope?

𝛬 = 𝑔ℤ2 + 𝑣.



A special case

Consider the affine lattices of the 
form

𝛬 =
1 𝑏
0 1

ℤ2 +
𝛼
0

.

What are the vectors of smallest 
slope?



𝛬 =
1 𝑏
0 1

ℤ2 +
𝛼
0

At every height, 
can have at most 
one vector in a 
unit length 
interval.
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1 𝑏
0 1

ℤ2 +
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So to find vector of smallest 
non-zero slope

• Consider the affine vector 
𝛼
0

.

• Use structure of the lattice 
and track how slope changes
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So to find vector of smallest 
non-zero slope

• Consider the affine vector 
𝛼
0

.

• Use structure of the lattice 
and track how slope changes



Short vectors of 𝛬 =
1 𝑏
0 1

ℤ2 +
𝛼
0

The next vector to become short 

൞

𝛼
0

+ second basis vector , 𝑖𝑓 𝑏 + 𝛼 < 1

𝛼
0

− first basis vector + (many) second basis , 𝑖𝑓 𝑏 + 𝛼 > 1



Short vectors of 𝛬 =
1 𝑏
0 1

ℤ2 +
𝛼
0

The next vector to become short
𝑏 + 𝛼
1

, 𝑖𝑓 𝑏 + 𝛼 < 1

𝑗𝑏 + 𝛼 − 1
j

, 𝑖𝑓 𝑏 + 𝛼 > 1

where 𝑗 =
2−𝛼

𝑏



Elements of the proof
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Elements of the proof

• This idea (with some modifications) is used to find 
holonomy vectors of doubled slit tori of smallest slope 

• These are the return times to the transversal

• This answer answers the gap distribution question for 
doubled slit tori
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