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Goals for this presentation

In this talk, I hope to communicate to you:

• Roughly two definitions of a Gibbs measure on a subshift
and why they are equivalent

• A property defining a class of factor maps that preserve
Gibbsianness, and some elements of the proof

• A Lanford-Ruelle theorem for irreducible sofic shifts on Z

On Thursday, we can go into more detail, as interest dictates
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Subshifts on groups

• Finite (discrete) alphabet A, countable group G

• Product topology on full shift AG (compact metrizable)

• Shift action of G on AG via (x · g)h = xgh

◦ When G = Z, (σnx)0 = xn

• A subshift is a closed, shift-invariant set X ⊆ AG

• Shift of finite type (SFT): subshift obtained by
forbidding finitely many finite patterns from AG

• Sliding block code: π : X → Y with π(x · g) = π(x) · g

◦ Mostly care about π surjective (hence notation π),
called a factor map

• Sofic shift: factor of an SFT

• All measures G -invariant Borel probability measures
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Finite thermodynamics

Take a finite set {1, . . . ,N} (e.g. patterns on Λ b G )
with “energy function” u ∈ RN and probability vector p

The free energy (volume derivative is called pressure)

−
N∑
i=1

pi log pi︸ ︷︷ ︸
entropy H(p)

−
N∑
i=1

piui

is uniquely maximized by the Gibbs distribution,

pi = Z−1 exp(−ui )

What about infinite volume?
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Interactions

Define on every finite set Λ b G an interaction
ΦΛ : X → R where ΦΛ(x) depends only on xΛ.

We assume translation-invariance, ΦgΛ(x) = ΦΛ(x · g).

• Example: Ising interaction on Zd

Then the Hamiltonian series gives the energy of xΛ

HΦ
Λ (x) =

∑
∆bG

∆∩Λ6=∅

Φ∆(x)

This converges when Φ is absolutely summable

‖Φ‖ =
∑
ΛbG
e∈Λ

‖ΦΛ‖∞ <∞

6 / 23
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Potentials

Define the energy at e directly via a potential f ∈ C (X ).

Regularity: if G has polynomial growth |Bn| ∼ nd , define

vk(f ) = sup{|f (x)− f (x ′)| | xBk
= x ′Bk

}

‖f ‖SVd (X ) =
∞∑
k=0

kd−1vk−1(f )

We called this the shell norm, vs. the volume norm

∞∑
k=0

kdvk−1(f )
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Potentials ⇐⇒ interactions

Interactions are more convenient for Gibbs measures;
potentials are more convenient for equilibrium measures.

An interaction Φ induces a potential AΦ ∈ SVd(X ):

AΦ(x) = −
∑

ΛbG , e∈Λ

aΛΦΛ(x)

where aΛ ≥ 0 are weights with
∑

g∈G ag−1Λ = 1.

This works if ‖Φ‖ <∞ and diam(Λ)d/|Λ| is bounded
above for ΦΛ 6≡ 0 (thanks to Nishant Chandgotia).

A potential f with finite volume norm induces an
interaction Φf (with f = AΦf ) by a telescoping
construction due to Muir, building on Ruelle.
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The Gibbs relation

Let (ΛN)∞N=1 be a sequence of finite sets exhausting G ,
and define relations TX ,N ⊂ X 2 by

(x , x ′) ∈ TX ,N ⇐⇒ xΛc
N

= x ′Λc
N

Let TX =
⋃∞

N=1 TX ,N (tail/asymptotic/Gibbs relation)

Equivalently, for all x ∈ X ,

(x , x ′) ∈ TX ⇐⇒ lim
g→∞

d(x · g , x ′ · g) = 0

9 / 23
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Cocycles
A cocycle is a measurable function φ : TX → R with

φ(x , x ′′) = φ(x , x ′) + φ(x ′, x ′′)

An interaction Φ induces a cocycle via

φΦ(x , x ′) =
∑
ΛbG

[ΦΛ(x)− ΦΛ(x ′)]

A potential f induces a cocycle via

φf (x , x ′) =
∑
g∈G

[f (x ′ · g)− f (x · g)]

If ‖Φ‖ <∞ and diam(Λ)d/|Λ| ≤ C then these agree,

φΦ = φAΦ

10 / 23
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The DLR equations

Definition
For a measure µ, a cocycle φ, a finite Λ b G , and a Borel
A ⊆ X , the Dobrushin-Lanford-Ruelle equation reads

µ(A | FΛc )(x)

=
∑
η∈AΛ

∑
ζ∈AΛ

exp(φ(ηxΛc , ζxΛc ))1X (ζxΛc )

−1

1A(ηxΛc )

Examples (with Φ ≡ 0)

• yes: Parry measure on irreducible edge shift
(uniform on paths of length n between two states)

• no: point mass on sunny-side-up shift (the measure
doesn’t know about the yolk)
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Conformal measures

A holonomy of TX is a Borel isomorphism ψ : A→ B
between Borel sets A,B ⊆ X with (x , ψ(x)) ∈ TX

A measure µ is conformal with respect to a cocycle φ if
for any holonomy ψ : A→ B and µ-a.e. x ∈ A,

d(µ ◦ ψ)

dµ
(x) = exp(φ(x , ψ(x)))

Requires nonsingularity: µ(A) = 0 =⇒ µ(TX (A)) = 0
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Equivalence of the definitions

• Dobrushin (1969) and Lanford-Ruelle (1969) introduced
the DLR equations

• Capocaccia (1976) introduced conformal measures

• Keller (1998): conformal ⇐⇒ satisfies the DLR
equations (for f ∈ SVd(X ), for a full shift X on Zd)

• Kimura (2015): any subshift on Zd , SVd potential:

◦ conformal =⇒ satisfies the DLR equations
◦ satisfies the DLR equations =⇒ “topologically

Gibbs” (defined by Meyerovitch (2013))

• M.-Borsato (2020): DLR equations =⇒ conformal
(any countable group, any subshift, any cocycle)

Going forward, we’ll use the term Gibbs measure

13 / 23
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Equilibrium measures

Let G = Zd , X ⊆ AG , f ∈ SVd(X ), µ a measure on X

The pressure of f is

PX (f ) = sup
µ

(
h(µ) +

∫
f dµ

)
(This is really a theorem, rather than a definition, but
we won’t need the definition)

A measure that attains the supremum is an equilibrium
measure for f

Problem: find sufficient topological conditions on X
such that Gibbs ⇐⇒ equilibrium

14 / 23
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Irreducibility and mixing

A subshift X ⊆ AG is irreducible if any two patterns
η, ζ ∈ B(X ) appear at different positions in some x ∈ X

• This is a kind of topological transitivity

A subshift X ⊆ AG is strongly irreducible if there is a
finite ∆ b G such that if ∆Λ ∩ Λ′ = ∅ then for any
η ∈ BΛ(X ), ζ ∈ BΛ′(X ), [η]Λ ∩ [ζ]′Λ 6= ∅

• Over Z, strongly irreducible ⇐⇒ mixing (irreducible
and aperiodic)

• Strong irreducibility implies condition (D): any
x , x ′ ∈ X can be glued along a narrow border

Theorem (Dobrushin, 1969; formulation due to Ruelle)

If X ⊆ AZd
satisfies condition (D) and ‖Φ‖ <∞, then any

Gibbs measure on X for Φ is an equilibrium measure for AΦ.
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Topological Markov properties
• A subshift X ⊆ AG has the topological Markov property

(TMP) if xΛ1x
′
Λc

2
∈ X whenever x , x ′ agree on Λ2 \ Λ1 for

Λ2 large enough depending on Λ1

• X has the strong TMP if we can take Λ2 = ∆Λ1 for a
fixed finite ∆ b G

• SFT =⇒ strong TMP =⇒ TMP, both strict

• none of these properties preserved under factors (golden
mean SFT → even shift lacks the TMP)

Theorem (Lanford-Ruelle, AZ; Bowen, Ruelle, Z-SFT)

For an SFT X ⊆ AZd
and ‖Φ‖ <∞, any equilibrium

measure on X for Φ is a Gibbs measure for Φ.

Theorem (Meyerovitch, 2013)

For any subshift X ⊆ AZd
and f ∈ SVd(X ), any equilibrium

measure for f is topologically Gibbs for f (⇐⇒ Gibbs when
X has the TMP).
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Preservation of Gibbsianness

Chazottes-Ugalde, Kempton-Pollicott (both 2011): a
symbol amalgamation map between full shifts over N
preserves Gibbsianness (for regular potentials)

Natural generalization of hidden Markov models

Let π : X → Y be a continuous factor map, φ a cocycle
on Y , and π∗φ(x , x ′) = φ(π(x ′), π(x ′)).

Question: for which X ,Y , π, φ must π∗µ be Gibbs for φ
whenever µ is Gibbs for π∗φ?

Note that we need π∗TY = TX up to null sets (π
essentially respects TX ) for this to even make sense

Theorem (2020)

If X ⊂ AG is irreducible and has the TMP, and π essentially
respects TX , then µ fully supported ergodic Gibbs for π∗φ
=⇒ π∗µ Gibbs for φ.
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Generalizing Lanford-Ruelle

Meyerovitch (2013) presents non-sofic examples with
Lanford-Ruelle-like properties (equilibrium =⇒ Gibbs)

• Skew products of Kalikow type (T -T−1)
• β-shifts
• the Dyck shift

Problem: prove a Lanford-Ruelle theorem for a class of
subshifts containing these examples

Natural first step: generalize beyond TMP; simplest
class without TMP in general are the sofic shifts

Theorem (2020)

For Y ⊆ AZ an irreducible sofic shift and f ∈ SVd(X ), every
equilibrium measure for f is Gibbs for f .

18 / 23
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Respecting the Gibbs relation

• If X ⊆ AG is irreducible and has the TMP, and
π : X → Y essentially respects TX , then π satisfies a
weak almost invertibility property (doesn’t seem to imply
that (X , µ) and (Y , π∗µ) are measurably conjugate)

• If G is amenable, X ⊆ AG has the strong TMP, and
π : X → Y essentially respects TX , then h(X ) = h(Y )

• If X ⊆ AZ is an irreducible SFT then π : X → Y
essentially respects TX iff π has degree one

Theorem (2020)

Let X ⊆ AZ be a mixing SFT, π : X → Y a finite-to-one
factor code, and f ∈ SV(Y ). If µ is a Gibbs measure for π∗f
then π∗µ is a Gibbs measure for f .

19 / 23
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Preservation of Gibbsianness:
proof ideas

• Lift finite-order holonomies from Y to X

• Building on Meester-Steif (2001): if π essentially
respects TX then it has no diamonds

• Hypotheses required to show that in almost every point,
every finite pattern appears infinitely often

◦ If X is strongly irreducible then every Gibbs
measure on X has full support

20 / 23
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Sofic Lanford-Ruelle: proof ideas

• Lift to the minimal right-resolving presentation, apply
Lanford-Ruelle, then push back down

• Yoo (2018): on an irreducible sofic shift over Z, every
eq. measure for f ∈ SVd has full support

• Yoo (2011): any fully supported (ergodic) measure on
an irreducible sofic shift lifts to a fully supported
(ergodic) measure on any SFT cover
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Possible discussion topics

• Clarify statements

• More about the proofs
• Examples and pictures
• Meyerovitch’s examples
• Further background on DLR theorems
• Anything else vaguely relevant, although the

probability of a sensible answer decays sharply with
distance from the three theorems presented here

Feel free to reach out before Thursday afternoon!

B sophmac at math dot ubc dot ca

On Thursday we can discuss any questions or comments
I have received, and see where the discussion goes. If it
seems appropriate, I can take a poll, like Lior did last
week, on prepared selections from the list above.
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