QUE

Lior Silbermar The University of British Columbia

Introduction

1 Planar Exercise

2 Classical and quantum mechanics

3 Arithmetic eigenfunctions

4 Without arithmetic

5 Scarring for quasimodes

Quantum Unique Ergodicity

Lior Silberman¹ The University of British Columbia

April 30, 2020

¹lior@math.ubc.ca; https://www.math.ubc.ca/~lior/<>

Scarring

QUE

Lior Silberman The University of British Columbia

Introduction

1 Planar Exercise

2 Classical an quantum mechanics

3 Arithmetic eigenfunctions

4 Without arithmetic

5 Scarring for quasimodes

[Heller 1984]

FIG. 2. Left column, three scarred states of the stadium; right column, the isolated, unstable periodic orbits corresponding to the scars.

ヘロト 人間ト 人間ト 人間ト

э

Other examples

QUE

Lior Silberman The University of British Columbia

Introduction

1 Planar Exercise

2 Classical an quantum mechanics

3 Arithmetic eigenfunctions

4 Without arithmetic

5 Scarring for quasimodes

(Images: Bäcker, Stromberg)

Quantum Unique Ergodicity

QUE

Lior Silberman The University of British Columbia

Introduction

1 Planar Exercise

2 Classical and quantum mechanics

3 Arithmetic eigenfunctions

4 Without arithmetic

5 Scarring for quasimodes **Problem**: What happens as $\lambda \to \infty$? What is a "feature"? Pointwise How big does $||u_{\lambda}||_{\infty}$ get as $\lambda \to \infty$? Weakly What happens to $\int |u_{\lambda}|^2 f \, dvol$ as $\lambda \to \infty$?

Theorem (Schnirel'man–Zelditch–Colin de Verdière)

If the billiard dynamics is chaotic (ergodic) then for almost all eigenfunctions $\int |u_{\lambda}|^2 f \operatorname{dvol} \to \frac{1}{\operatorname{vol}} \int f \operatorname{dvol}$

Conjecture (Rudnick-Sarnak)

On a manifold of negative sectional curvature, replace "almost all" with "all".

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Hassell 2008: For stadium billiard, can't remove "almost".

Plan

QUE

Lior Silberman The University of British Columbia

Introduction

1 Planar Exercise

2 Classical and quantum mechanics

3 Arithmetic eigenfunctions

4 Without arithmetic

5 Scarring for quasimodes **1** Bounds on eigenfunctions on the tree and in the plane

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- 2 "Classical" and "quantum" mechanics
- 3 "Arithmetic" QUE
- 4 Without arithmetic
- **5** Negative results for approximate eigenfunctions

A pointwise bound

QUE

Lior Silberman The University of British Columbia

Introduction

1 Planar Exercise

2 Classical an quantum mechanics

3 Arithmetic eigenfunctions

4 Without arithmetic

5 Scarring for quasimodes

Theorem (Hörmander bound)

$$\|u_{\lambda}\|_{\infty} \leq C\lambda^{\frac{n-1}{4}} \|u_{\lambda}\|_{2}.$$

Proof (in spirit).

Use u_{λ} as the initial condition for an evolution equation, e.g.

$$i\hbar \frac{\partial}{\partial t} \psi(t,x) = -\Delta_x \psi(t,x).$$

• $\Psi(t,x) = e^{-i\lambda t} u_{\lambda}(x)$ is a solution.

- But solutions tend to follow classical trajectories.
- So ψ(t,x) looks like u_λ "averaged" over a region near x, and can relate ψ(t,x) to ||u_λ||₂.

Some physics

QUE ior Silber.
QUE ior Silber.
ior Silber.
The Unive
of Briti
Columb
Classical
uantum
nechanics
igenfunct

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

The Space of Lattices

QUE

Lior Silbermar The University of British Columbia

Introduction

1 Planar Exercise

2 Classical and quantum mechanics

3 Arithmetic eigenfunctions

4 Without arithmetic

5 Scarring for quasimodes Move to curved geometry and periodic boundary conditions.

• $\mathcal{P}_n =$ {symmetric, positive-definite *n*-matrices X, det(X) = 1}

- SL_n(\mathbb{R}) acts by $g \cdot X := gXg^t$, preserving metric: dist(Id, X) = $\left(\sum_{i=1}^n |\log \mu_i|^2\right)^{1/2}$, μ_i = eigenvalues.
- For n = 2, \mathcal{P}_n is the hyperbolic plane.
- Study the quotient $\mathcal{L}_n = \operatorname{SL}_n(\mathbb{Z}) \setminus \mathcal{P}_n$
 - = isometry classes of unimodular lattices in \mathbb{R}^n .

Arithmetic QUE

QUE

Lior Silberman The University of British Columbia

Introduction

1 Planar Exercise

2 Classical and quantum mechanics

3 Arithmetic eigenfunctions

4 Without arithmetic

5 Scarring foi quasimodes Domain has number-theoretic symmetries, manifest as Hecke operators $(T_p f = \sum_{y \sim x} f(y))$

$$T_p \Delta = \Delta T_p, \qquad T_p T_q = T_q T_p$$

- Study limits of joint eigenfunctions. Start with n = 2:
- Rudnick–Sarnak 1994: limits don't scar on closed geodesics.
- Iwaniec–Sarnak 1995: savings on Hörmander bound
 - small balls have small mass
- Bourgain–Lindenstrauss 2003: limits have positive entropy
 - small dynamical balls have small mass
- Lindenstrauss 2006: from this get equidistribution.

Higher-rank QUE

QUE

Lior Silberman The University of British Columbia

Introduction

1 Planar Exercise

2 Classical and quantum mechanics

3 Arithmetic eigenfunctions

4 Without arithmetic

5 Scarring for quasimodes

- What about $n \ge 3$?
- No longer negatively curved extend Rudnick–Sarnak conjecture
- S-Venkatesh 2007: limits respect Weyl chamber flow
- S-Venkatesh: (non-degenerate) limits are uniformly distributed if n is prime (division algebra quotient).

QUE Results proceed by

- Lift to the bundle where classical flow lives.
- Bound mass of dynamical balls ("positive entropy")
- Apply measure-classification results to identify the limit.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

QUE on general manifolds

QUE

Lior Silberman The University of British Columbia

Introduction

1 Planar Exercise

2 Classical and quantum mechanics

3 Arithmetic eigenfunctions

4 Without arithmetic

5 Scarring for quasimodes

- In μ(B(C,ε)) ≪ ε^h, h measures the complexity of μ.
 Related to the metric entropy h(μ).
- Anantharaman ~2003: On a manifold of negative curvature, every quantum limit has positive entropy.
- Anatharaman + others: quantitative improvements

Idea: "quantum partition"

Applied to the space of lattices

QUE

Lior Silberman The University of British Columbia

Introduction

1 Planar Exercise

2 Classical and quantum mechanics

3 Arithmetic eigenfunctions

4 Without arithmetic

5 Scarring for quasimodes

- \mathcal{L}_n not negatively curved (has flats).
- Nevertheless limits have positive entropy:
 - Microlocal calculus adapted to locally symmetric spaces.
 - Entropy contribution from "rapidly expanding" directions.
- Measure-classification
 - Restriction on possible ergodic components.
 - Use *quantitative* entropy bound.

Theorem (Anantharaman–S)

Let $X = \Gamma \setminus \mathcal{P}_3$ be compact. Then every quantum limit on X is at least $\frac{1}{4}$ Haar measure.

New uncertainty principle

QUE

Lior Silberman The University of British Columbia

Introduction

1 Planar Exercise

2 Classical and quantum mechanics

3 Arithmetic eigenfunctions

4 Without arithmetic

5 Scarring for quasimodes • Density is now known for n = 2:

Theorem (Dyatlov–Jin 2018)

Every quantum limit on a compact hyperbolic surface has full support.

Theorem (Dyatlov–Jin–Nonnenmacher 2019)

The same on a compact surface with Anosov geodesic flow.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Approximate eigenfunctions

QUE

Lior Silberman The University of British Columbia

Introduction

1 Planar Exercise

2 Classical and quantum mechanics

3 Arithmetic eigenfunctions

4 Without arithmetic

5 Scarring for quasimodes Method of Anantharaman applies to approximate eigenfunctions.

$$\|\Delta u_{\lambda} + \lambda u_{\lambda}\| \leq C \frac{\sqrt{\lambda}}{\log \lambda}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Entropy depends on C.

Problem

What are the possible limits of these "log-scale quasimodes"?

Scarring of quasimodes

QUE

Lior Silberman The University of British Columbia

Introduction

1 Planar Exercise

2 Classical and quantum mechanics

3 Arithmetic eigenfunctions

4 Without arithmetic

5 Scarring for quasimodes

Problem

On a manifold M, construct log-scale quasimodes which concentrate on singular measures

$$\|\Delta u_{\lambda} + \lambda u_{\lambda}\| \le C \frac{\sqrt{\lambda}}{\log \lambda}$$
$$\lim_{\to \infty} \int |u_{\lambda}|^2 f \, \mathrm{dvol} = \int f \, \mathrm{d}\mu$$

Brooks 2015: M = hyperbolic surface, $\mu =$ geodesic.

Uses the geometry explicitly (Eisenstein packets)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Eswarathasan–Nonnenmacher 2016: M=any surface, μ = hyperbolic geodesic.

High dimensions

QUE

Lior Silberman The University of British Columbia

Introduction

1 Planar Exercise

2 Classical and quantum mechanics

3 Arithmetic eigenfunctions

4 Without arithmetic

5 Scarring for quasimodes

Theorem (Eswarathasan–S 2017)

Let M be a hyperbolic manifold, and let $N \subset M$ be a compact totally geodesic submanifold. Then there is a sequence of log-scale quasimodes uniformly concentrating on N.

Includes the case N = closed geodesic.

Actually, any quantum limit on N achievable.

Corollary

(*M* compact) every invariant measure on *M* is a limit of log-scale quasimodes.

Proof.

In a hyperbolic system, closed orbits are dense in the space of invariant measures.