
QUE

Lior Silberman
The University

of British
Columbia

Introduction

1 Planar
Exercise

2 Classical and
quantum
mechanics

3 Arithmetic
eigenfunctions

4 Without
arithmetic

5 Scarring for
quasimodes

Quantum Unique Ergodicity

Lior Silberman1

The University of British Columbia

April 30, 2020

1lior@math.ubc.ca; https://www.math.ubc.ca/~lior/

lior@math.ubc.ca
https://www.math.ubc.ca/~lior/


QUE

Lior Silberman
The University

of British
Columbia

Introduction

1 Planar
Exercise

2 Classical and
quantum
mechanics

3 Arithmetic
eigenfunctions

4 Without
arithmetic

5 Scarring for
quasimodes

Scarring

[Heller 1984]
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Other examples

(Images: Bäcker, Stromberg)
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Quantum Unique Ergodicity

Problem: What happens as λ → ∞? What is a “feature”?
Pointwise How big does ‖uλ‖∞

get as λ → ∞?
Weakly What happens to

´
|uλ |2 f dvol as λ → ∞?

Theorem (Schnirel’man–Zelditch–Colin de Verdière)

If the billiard dynamics is chaotic (ergodic) then for almost all
eigenfunctions

´
|uλ |2 f dvol→ 1

vol
´
f dvol

Conjecture (Rudnick–Sarnak)

On a manifold of negative sectional curvature, replace “almost
all” with “all”.

Hassell 2008: For stadium billiard, can’t remove “almost”.
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Plan

1 Bounds on eigenfunctions on the tree and in the plane
2 “Classical” and “quantum” mechanics
3 “Arithmetic” QUE
4 Without arithmetic
5 Negative results for approximate eigenfunctions
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A pointwise bound

Theorem (Hörmander bound)

‖uλ‖∞
≤ Cλ

n−1
4 ‖uλ‖2.

Proof (in spirit).

Use uλ as the initial condition for an evolution equation, e.g.

i h̄ ∂

∂ tψ(t,x) =−∆x ψ(t,x) .

ψ(t,x) = e−iλ tuλ (x) is a solution.
But solutions tend to follow classical trajectories.
So ψ(t,x) looks like uλ “averaged” over a region near x ,
and can relate ψ(t,x) to ‖uλ‖2.
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Some physics
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The Space of Lattices

Move to curved geometry and periodic boundary conditions.
Pn =
{symmetric, positive-definite n-matrices X , det(X ) = 1}
SLn(R) acts by g ·X := gXg t , preserving metric:

dist(Id,X ) =
(

∑
n
i=1 |logµi |2

)1/2
, µi = eigenvalues.

For n = 2, Pn is the hyperbolic plane.
Study the quotient Ln = SLn(Z)\Pn
= isometry classes of unimodular lattices in Rn.
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Arithmetic QUE

Domain has number-theoretic symmetries, manifest as
Hecke operators (Tpf = ∑y∼x f (y))

Tp∆ = ∆Tp, TpTq = TqTp

Study limits of joint eigenfunctions. Start with n = 2:
Rudnick–Sarnak 1994: limits don’t scar on closed
geodesics.
Iwaniec–Sarnak 1995: savings on Hörmander bound

small balls have small mass
Bourgain–Lindenstrauss 2003: limits have positive entropy

small dynamical balls have small mass
Lindenstrauss 2006: from this get equidistribution.
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Higher-rank QUE

What about n ≥ 3?
No longer negatively curved – extend Rudnick–Sarnak
conjecture
S–Venkatesh 2007: limits respect Weyl chamber flow
S–Venkatesh: (non-degenerate) limits are uniformly
distributed if n is prime (division algebra quotient).

QUE Results proceed by
Lift to the bundle where classical flow lives.
Bound mass of dynamical balls (“positive entropy”)
Apply measure-classification results to identify the limit.
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QUE on general manifolds

In µ (B(C ,ε))� εh, h measures the complexity of µ.
Related to the metric entropy h(µ).
Anantharaman ~2003: On a manifold of negative
curvature, every quantum limit has positive entropy.
Anatharaman + others: quantitative improvements
Idea: “quantum partition”
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Applied to the space of lattices

Ln not negatively curved (has flats).
Nevertheless limits have positive entropy:

Microlocal calculus adapted to locally symmetric spaces.
Entropy contribution from “rapidly expanding” directions.

Measure-classification
Restriction on possible ergodic components.
Use quantitative entropy bound.

Theorem (Anantharaman–S)

Let X = Γ\P3 be compact. Then every quantum limit on X is
at least 1

4 Haar measure.
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New uncertainty principle

Density is now known for n = 2:

Theorem (Dyatlov–Jin 2018)

Every quantum limit on a compact hyperbolic surface has full
support.

Theorem (Dyatlov–Jin–Nonnenmacher 2019)

The same on a compact surface with Anosov geodesic flow.
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Approximate eigenfunctions

Method of Anantharaman applies to approximate
eigenfunctions.

‖∆uλ + λuλ‖ ≤ C
√

λ

logλ

Entropy depends on C .

Problem
What are the possible limits of these “log-scale quasimodes”?
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Scarring of quasimodes

Problem
On a manifold M, construct log-scale quasimodes which
concentrate on singular measures

‖∆uλ + λuλ‖ ≤ C
√

λ

logλ

lim
λ→∞

ˆ
|uλ |2 f dvol =

ˆ
f dµ

Brooks 2015: M = hyperbolic surface, µ = geodesic.
Uses the geometry explicitely (Eisenstein packets)

Eswarathasan–Nonnenmacher 2016: M=any surface,
µ = hyperbolic geodesic.
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High dimensions

Theorem (Eswarathasan–S 2017)

Let M be a hyperbolic manifold, and let N ⊂M be a compact
totally geodesic submanifold. Then there is a sequence of
log-scale quasimodes uniformly concentrating on N.

Includes the case N = closed geodesic.
Actually, any quantum limit on N achievable.

Corollary
(M compact) every invariant measure on M is a limit of
log-scale quasimodes.

Proof.
In a hyperbolic system, closed orbits are dense in the space of
invariant measures.
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