Lior Silberman's Math 422/501: Problem set 6 (due 23/10/2020)

Group actions

- 1. Let G be a group, let L be a field. Show that the set $\operatorname{Hom}_{\operatorname{Grp}}(G, L^{\times}) \subset L^{G}$ is linearly independent over L.
- 2. Let G be a finite group of automorphisms of a field L, and let K = Fix(G) be its fixed field. In class we showed that [L:K] = #G.
 - (a) Show that the extension L/K is normal. Hint: Let $f \in K[x]$ be irreducible, let $\alpha \in L$ be a root, and consider the polynomial $\prod_{\beta \in G \cdot \alpha} (x - \beta)$ where the product is over the G-orbit of α .
 - (b) Show that the extension is separable. *Hint*: Count monomorphisms.
- 3. (The Galois correspondence for finite fields) Fix a prime p.
 - (a) Assume that \mathbb{F}_{p^k} embeds in \mathbb{F}_{p^n} . Show that k|n and find the degree of this extension.
 - (b) Let k|n. Show that \mathbb{F}_{p^n} has a unique subfield isomorphic to \mathbb{F}_{p^k} , consisting of the fixed points of the map $x \mapsto x^{p^k}$.
 - (c) Show that $G = \operatorname{Aut}_{\mathbb{F}_{p^k}}(\mathbb{F}_{p^n})$ is cyclic of order $[\mathbb{F}_{p^n} : \mathbb{F}_{p^k}]$ and generated by the Frobenius map $x \mapsto x^{p^k}$.
 - (d) Using (a),(b),(c) show that the map $H \mapsto \operatorname{Fix}(H)$ induces a bijection between subgroups H < G and intermediate fields $\mathbb{F}_{p^k} \subset F \subset \mathbb{F}_{p^n}$ such that $[\mathbb{F}_{p^n} : F] = \#H$.

Symmetric polynomials

Let R be a ring and let the symmetric group S_n acts on the polynomial ring $R[x_1, \ldots, x_n]$ by permuting the variables. Write $R[\underline{x}]^{S_n}$ for the set of fixed points.

- 4. (Basic structure)
 - (a) Show that $R[\underline{x}]^{S_n}$ is a subring of $R[\underline{x}]$, the ring of symmetric polynomials.
 - (b) For $\alpha \subset [n]$ write \underline{x}^{α} for the monomial $\prod_{i \in \alpha} x_i$. For $1 \leq r \leq n$ let

$$s_r(\underline{x}) = \sum_{\alpha \in \binom{[n]}{r}} \underline{x}^{\alpha} \in R[\underline{x}].$$

Show that $s_r(\underline{x}) \in R[\underline{x}]^{S_n}$. These are called the elementary symmetric polynomials.

- 5. (Generation) Define the *height* of a monomial $\prod_{i=1}^n x_i^{\alpha_i}$ to be $\sum_{i=1}^n i\alpha_i$. Define the *height* of $p \in R[\underline{x}]$ to be the maximal height of a monomial appearing in p.
 - (a) Given $p \in R[\underline{x}]^{S_n}$ find $\underline{\beta} \in \mathbb{Z}_{\geq 0}^n$ and $r \in R$ so that the highest term of $q = r \prod_{r=1}^n s_r^{\beta_r}$ is a highest term of p.
 - (b) Show that p-q has either fewer highest terms than p or smaller height than p.
 - (c) Show that every symmetric polynomial can be written as a polynomial of equal or smaller degree in the elementary symmetric polynomials.

50

Derivatives, derivations and separability

- 6. (Derivative criterion for separability) Let K be a field.
 - (a) Show that the formal derivative $\partial \colon K[[x]] \to K[[x]]$ (see PS2 problem 6(d)) restricts to a K-linear derivation on K[x].
 - (b) Let L/K be an extension and let $\alpha \in L$ be a zero of $f \in K[x]$. Show that $(x \alpha)^2 | f$ in L[x] iff $Df(\alpha) = 0$ iff $(x \alpha)|Df$ in L[x].
 - (*c) Show that $f \in K[x]$ has no repeated roots in any extension iff (f, Df) = 1.
 - (d) Show that an irreducible $f \in K[x]$ is separable iff $Df \neq 0$.
- 7. Let $f(x) = x^3 + x + 1$. Over which fields is f separable?

Supplementary problems: More on derivations

Fix a ring R.

- A. Let A be an R-algebra, and consider the map $A \times A \to A$ given by the commutator bracket [a,b] = ab ba,
 - (a) Show $(A, [\cdot, \cdot])$ is a *Lie algebra*, that is that the commutator is *R*-bi-linear and anti-symmetric, and satisfies the *Jacobi identity* [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0.
 - (c) Show that for a fixed $a \in A$ the map $b \mapsto [a, b]$ is an element $ad(a) \in End_R(A)$.
 - (d) Show that ad(a) is a derivation: (ad(a))(bc) = [(ad(a))(b)]c + b[(ad(a))(c)].
- B. Let A be an R-algebra. Let $\operatorname{Der}_R(A) = \{D \in \operatorname{End}_R(A) \mid D \text{ is a derivation}\}.$
 - (a) Show that $\operatorname{Der}_R(A) \subset \operatorname{End}_R(A)$ is an R-submodule.
 - (b) Give an example showing that $\operatorname{Der}_R(A)$ need not be an R-subalgebra (that is, closed under multiplication=composition).
 - (c) Show that $Der_R(A)$ is closed under the commutator bracket of $End_R(A)$.
- C. Let A an R-algebra. Show that the map ad: $A \to \operatorname{Der}_R(A)$ is a map of Lie algebras, that is a map of R-modules respecting the brackets.