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Introduction

Lior Silberman, lior@Math.UBC.CA, https://www.math.ubc.ca/~lior
Office: Math Annex 1112
Phone: 604-827-3031

0.1. Administrivia

Syllabus posted online. Key points:
• Problem sets will be posted on the course website. Solutions will be posted on a secure system.

– The grader may only mark selected problems. Solutions will be complete.
• Absolutely essential to

– ASK QUESTIONS IN CLASS
– Read ahead according to the posted schedule. Lectures after the first will assume that you

had done your reading.
– Do homework.

• Office hours, Piazza.
• Course website has notes, problem sets, announcements, reading assignments etc.

0.2. Course plan (subject to revision)

Four aspects:
• Calculation (“matrix algebra”)
• Language (“linear algebra in the wild”)
• Linear Algebra
• Metamathematics

Topics
• Vector spaces
• Linear maps
• Linear Equations
• Determinants
• Eigenvectors and diagonalization
• Inner product spaces

0.3. Change-of-language

• Signal processing example: plug two guitars into amp. Ideally, output is sum of inputs, and
rescaling inputs rescales output.
• Go from statements about functions to statements about sets of functions – see worksheet.
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CHAPTER 1

Vector spaces and Linear maps

1.1. Vector spaces

DEFINITION 1. A (real) vector space is a triple V = (V,+V , ·V ) where:
(0) V is a set; +V : V ×V →V and ·V : R×V →V are operations.
(1) (addition of vectors) For every two elements (“vectors”) u,v ∈ V , there is a vector u+V v ∈ V

and:
(a) (“Associativity”) For all u,v,w ∈V we have (u+V v)+V w = u+V (v+V w).
(b) (“Commutativity”) For all u,v ∈V we have u+V v = v+V u.
(c) (“Zero”) There is a vector 0V ∈V such that for all u ∈V , u+V 0V = u.
(d) (“Negatives”) For all u ∈V there is a vector u′ ∈V such that u+V u′ = u′+V u = 0V .

(2) (scalar multiplication) For every (“scalar”)a∈R and every vector u∈V there is a vector a ·V u∈
V and:
(a) (“Associativity”) For all a,b ∈ R and u ∈V we have a ·V (b ·V u) = (a ·V b) ·V u.
(b) (“One”) For all u ∈V we have 1 ·V u = u.

(3) (distributive laws)
(a) For all a ∈ R, u,v ∈V we have a ·V (u+V v) = (a ·V u)+V (a ·V v).
(b) For all a,b ∈ R,u ∈V we have (a+b) ·V u = (a ·V u)+V (b ·V u).

NOTATION 2. From now on we drop the subscript V and the dot from products.

EXAMPLE 3. {0}, R, Rn.

PROBLEM 4. Decide whether any of the following is a vector space. If not, identify an axiom that
fails.

(1) V = Rn, usual addition, av = 0 for all a,v.
(2) V = Rn, usual scalar multiplication,

(3) V =

{(
x1
x2

)
∈ R2 | x1 +2x2 = 0

}
, addition and multiplication as in R2

(4) V =

{(
x1
x2

)
∈ R2 | x1 +2x2 = 1

}
, addition and multiplication as in R2.

LEMMA 5. For any nonzero a ∈R× and any b,c ∈V the equation ax+b = c has the unique solution
x = a−1 (c+b′

)
.

COROLLARY 6 (Zero).
(1) If u+u = u then u = 0.
(2) There is a unique zero vector.
(3) For all a ∈ R, a ·0 = 0.
(4) For all u ∈V , 0 ·u = 0.

COROLLARY 7 (Elementary properties).

(1) Every vector has a unique negative, to be denoted −u. We will use the shorthand u− v
def
=

u+(−v).
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(2) (−1)u =−u

EXAMPLE 8. RX (in the book: F(X ,R)), hence Rn, Mn×m(R)
def
= R[n]×[m], R[x] (in the book P(R)),

R[x]≤n (in the book Pn(R)).

1.2. Subspaces, examples

DEFINITION 9. Let (V,+, ·) be a vector space. A subset U ⊂ V is called a subspace of V if it is a
vector space under the operations +, · .

Note that every subspace must be non-empty, because it must contain a zero vector.

LEMMA 10. Let U ⊂V be a subspace. Then 0V ∈U.

PROOF. Let u ∈U (exists since U is non-empty). Then 0V = 0 ·V u ∈U by closure. �

LEMMA 11. To check if U is a subspace of V it is necessary and sufficient to check that 0 ∈U and
that one of the following conditions:

(1) For every a ∈ R, u,v ∈U we have a ·u,u+ v ∈U.
(2) For every a,b ∈ R, uv ∈U we have au+bv ∈U.

PROOF. Problem Set 1 �

EXAMPLE 12 (Subspaces). (0) Every vector space V has the “trivial” subspaces {0V} and V
itself (check!).

(1) {v ∈ Rn | v1 = 0} is a subspace, but {v ∈ Rn | v1 = 1} is not.
(2) {v ∈ Rn | ∑n

i=1 vi = 0} is a subspace, but {v ∈ Rn | ∑n
i=1 vi = n} is not.

(3)
{
(x,y) ∈ R2 | y = ex} is not a subspace.

(4) { f : [−1,1]→ R | f is continuous at 0} ⊂ R[−1,1].
(5) C ([a,b])⊂ R[a,b].
(6) More generally, if I ⊂ R is an interval then Ck(I)⊂ RI is a subspace.
(7) `∞(X)⊂ RX is a subspace. (PS 1)

LEMMA 13. Let {Ui}i∈I be a family of subspaces of a space V . Then
⋂

iUi is a subspace as well.

PROOF. Let W =
⋂

iUi. By Lemma 11, 0 ∈Ui for all i so 0 ∈W . Also, let u,v ∈W , let a,b ∈ R,
and consider au+bv. For all i, u,v ∈Ui since W ⊂Ui. By the Lemma again it follows that au+bv ∈Ui.
Since this is true for every i, au+bv ∈W and we are done. �

LEMMA 14. Let U ⊂V be a subspace, n≥ 0, {ai}n
i=1 ⊂ R, {ui}

n
i=1 ⊂U. Then ∑

n
i=1 aiui ∈U.

PROOF. PS1. �

DEFINITION 15. A sum ∑
n
i=1 aiui is called a linear combination.

Let S⊂V be a subset. The span Span(S) is the set of linear combinations of elements of S.

REMARK 16. Note that 0 ∈ Span(S) for all S, as the value of the empty sum.

THEOREM 17. Span(S) is a subspace of V . In fact,

Span(S) =
⋂
{U | S⊂U ⊂V and U is a subspace} .

PROOF. By the Remark, Span(S) contains zero. Closure under rescaling is automatic, under addition
by concatenation of sequences. That Span(S) ⊂

⋂
{U | S⊂U ⊂V and U is a subspace} is Lemma 14.

For the reverse note that Span(S) is a subspace containing S. �
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1.3. Linear dependence and independence

1.3.1. Linear dependence and independence. Fix a vector space V and a set S⊂V .

DEFINITION 18. Say that v ∈ V depends linearly on S if there are {vi}
n
i=1 ⊂ S and scalars {ai}n

i=1
such that ∑

n
i=1 aivi = v. Otherwise say that v is linearly independent of S.

EXAMPLE 19 (Linear dependence). (0) The zero vector depends on every set S (via the empty
combination)

(1) No non-zero vector depends on {0}.
(2) v depends on S iff v ∈ Span(S).
(3) (Useful to prove independence) If can find a subspace W such that S ⊂W and v /∈W then v is

independent of S.

DEFINITION 20. The set S is linearly dependent if some v ∈ S depends on S \{v}; linearly indepen-
dent otherwise.

LEMMA 21. S is linearly independent iff whenever {vi}
n
i=1 ⊂ S are distinct and {ai}n

i=1 ⊂R are such
that ∑

n
i=1 aivi = 0 we have ai = 0 for all i.

PROOF. Solve linear dependence for a vector with a non-zero coefficient. �

1.3.2. Bases.

LEMMA 22. S linearly independent and v /∈ Span(S) implies S∪{v} independent.

PROOF. Suppose ∑
n
i=1 aivi+av= 0 where {vi}

n
i=1⊂ S are distinct. If a 6= 0 we’d have v=∑

n
i=1(−a−1ai)vi ∈

Span(S), a contradiction. Thus a= 0. Then ∑
n
i=1 aivi = 0 so all the other ai = 0 by independence of S. �

COROLLARY 23. S maximal linearly independent then spanning.

PROOF. Contrapositive of Lemma: if not spanning, then there is a vector independent of S. �

DEFINITION 24. A spanning independent set is called a basis.

ALGORITHM 25. Find bases by adding vectors.

LEMMA 26. S spanning and minimal then independent.

PROOF. If there is a dependence then can remove a vector without affecting span. �

ALGORITHM 27. Find bases by subtraction.

COROLLARY 28. Every finitely generated vector space has a basis.

AXIOM 29. Every vector space has a basis.

1.3.3. Dimension. Standard basis of Rn; bases for space of polynomials. Bases for space of solutions
of system of equations.

PROPOSITION 30 (Steinitz replacement lemma). Let S ⊂ V be a generating set, and let T ⊂ V be
linearly independent. Suppose that T 6⊂ S and let u ∈ T \S. Then there isv ∈ S\T so that S\{v}∪{u} is
also a generating set.

PROOF. Let u ∈ T \ S. Then u ∈ Span(S) and therefore there are {vi}
n
i=1 ⊂ S and {ai}n

i=1 ⊂ R such
that u = ∑

n
i=1 aivi. Suppose that for every i, ai = 0 or vi ∈ T . Then, omitting the zero contributions, we’d

have that u depends on T \{u} (vi ∈ S so they aren’t equal to vu), contradicting the independence of T ).
It follows that there is j for which a j 6= 0 and v j /∈ T . We then have

v j =
n

∑
i=1
i6= j

(−a−1
j ai)vi +a−1

j u .
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It follows that v j ∈ Span
(
S\
{

v j
}
∪{u}

)
, and hence that V ⊃ Span

(
S\
{

v j
}
∪{u}

)
⊃ Span(S) = V so

the span is as claimed. �

THEOREM 31. Let S ⊂ V be a finite generating set, and let T ⊂ V be linearly independent. Then
#T ≤ #S.

PROOF. We repeatedly replace vectors of T into S until T ⊂ S.
Formally, let A ⊂ S be minimal such that there is A′ ⊂ T such that A∪ A′ is a generating set of

size at most #S (such A exist – take A = S). Then A is disjoint from T (otherwise we could reduce A
and increase A′ by moving the vectors over). If A′ = T , #T ≤ #(A∪A′) ≤ #S, so suppose that A′ 6= T .
Then there is u ∈ T \A′ so that u /∈ A∪A′ and by thte Proposition there is v ∈ (A∪A′) \T = A so that
(A\{v})∪ (A′∪{u}) is also generating, of size at most #S. This contradicts the minimality of A. �

COROLLARY 32. Let V be finitely generated. Then any two bases of B have the same size.

DEFINITION 33. Let V be finitely generated. Them dimV is the size of any basis of V (these exist by
Corollary 28).

1.4. Geometric picture

The Euclidean plane.
(1) vectors, addition and the parallelogram law.
(2) points and lines: subspaces and affine subspaces

Euclidean 3-space. points, lines, planes.

Rotations in the plane. Given two vectors a =

(
x1
y1

)
,b =

(
x2
y2

)
in the plane, their Euclidean distance

is defined by

dist(a,b) =
(
(x2− x1)

2 +(y2− y1)
2)2

.

Note that the distance only depends on the displacement b−a.
The Euclidean plane is E2 the plane R2 equipped with this distance function.

DEFINITION 34. A Euclidean isometry is a distance-preserving function f : E2→ E2. The set of all
such functions is called the isometry group or the Euclidean group.

This certainly includes the translations

Ta(v) = v+a.

Up to translation we can assume that an isometry preserves the origin, so let R be a Euclidean isometry
such that R0 = 0.

• Goal: classify all such maps.
Let R be a Euclidean isometry such that R0 = 0.

We first note that dist(e1,0) = dist(e2,0) = 1 (they are “unit vectors”). Thus

dist(Re1,0) = dist(Re1,R0) = dist(e1,0) = 1 .

Thus Re1 =

(
x
y

)
where x2 + y2 = 1, and there is a unique angle θ so that Re1 =

(
cosθ

sinθ

)
.

For the same reason we have Re2 =

(
cosφ

sinφ

)
for some angle φ . What is the distance between two

unit vectors at these angles?



1.4. GEOMETRIC PICTURE 9

dist
((

cosθ

sinθ

)
,

(
cosφ

sinφ

))
=

√
(cosφ − cosθ)2 +(sinφ − sinθ)2

=

√
cos2 φ + cos2 θ −2cosφ cosθ + sin2

φ + sin2
θ −2sinφ sinθ

=
√

2
√

1− cos(θ −φ)

(this is called the “law of cosines”). But we must have

dist(Re1,Re2) = dist(e1,e2) =
√

2 .

Since the distance between two unit vectors depends only on the angle between them, it follows
that a distance -preserving function must preserve the angles. So in our case cos(φ −θ) = 0 and hence
φ −θ =±π

2 . We consider the case φ = θ + π

2 first, where

Re2 =

(
cos(θ + π

2 )
sin(θ + π

2 )

)
=

(
−sinθ

cosθ

)
.

Now the formula above shows that the distance between two unit vectors only dpeends on the angle

between them, so our map R must preserve angles. Thus if we take the vector
(

cosα

sinα

)
(which has angle

α to e1 and π

2 −α to e2) it must map to the unit vector at angle α +θ . We conclude that

R
(

cosα

sinα

)
=

(
cos(α +θ)
sin(α +θ)

)
=

(
cosθ cosα− sinθ sinα

sinθ cosα + cosθ sinα

)
.

Now any vector can be recaled to be a unit vector, and R must respect this scaling (since that’s the distance

to the origin). So for any vector x,y let r =
√

x2 + y2 = dist
((

x
y

)
,0
)

and choose α so that y
x = tanα .

Then

R
(

x
y

)
= rR

(
cosα

sinα

)
= r
(

cosθ cosα− sinθ sinα

sinθ cosα + cosθ sinα

)
=

(
cosθ ·r cosα− sinθ ·r sinα

sinθ ·r cosα + cosθ ·r sinα

)
=

(
cosθ ·x− sinθ ·y
sinθ ·x+ cosθ ·y

)
(check for (x,y) = (1,0) and (x,y) = (0,1)!).

OBSERVATION 35. Surprise: R is a linear function! the coordinates of Rv are linear in the coordinates
of v. The investigation of such maps will be the next topic.



CHAPTER 2

Linear Transformations

2.1. Linear Transformations

2.1.1. Definition; basic properties. The key definition for this course:

DEFINITION 36. Let U,V be vector spaces. A function T : U → V is a linear transformation (or
linear map or homomorphism of vector spaces) if for all u,v ∈U and scalars a,b we have

T (au+bv) = aT u+bT v .

REMARK 37. Note the notation for applying the function: no parentheses around the argument.

EXAMPLE 38 (Liner maps). (0) The zero map f (u) = 0V for all u is linear.
(1) Recaling: for a∈Rlet Za : U→U be given by Zau= au (linearity follows from axioms of vector

space).
(2) Identity map: Idu = u (Id = Z1).
(3) Calculus: d

dx , f 7→ (x 7→
∫ x

a f (t)dt), say on C∞(a,b).
(4) The shift on RN and RZ.
(5) Linear functionals.

(a) Evaluation of functions: δx( f ) def
= f (x) as a map δx : RX → R.

(b) Limits of sequences: lim: c→ R.

LEMMA 39. Let T be a linear map. Then
(1) T 0 = 0.
(2) T (−u) =−T u.

PROOF. Either multiplication by scalars (0,−1 respectively) or use that T 0+T 0 = T (0+ 0) = T 0
and that T u+T (−u) = T 0 = 0. �

LEMMA 40. T (∑n
i=1 aivi) = ∑

n
i=1 aiT vi.

PROOF. Induction on n. �

COROLLARY 41. For any S⊂U, T (Span(S)) = Span(T (S)).

2.1.2. Range and kernel; rank-nullity.

PROPOSITION 42. Let T : U →V be linear.
(1) Let W ⊂U be a subspace. Then the image T (W ) = {T w | w ∈U} is a subspace of V .
(2) Let X ⊂ V be a subspace. Then the inverse image T−1X = {u ∈U | T u ∈ X} is a subspace of

U.

DEFINITION 43. Image(T ) = Im(T ) def
= T (V ) is called the image of T , Ker(T ) = {u ∈U | T u = 0}=

T−1 ({0}) is called the kernel of T .

COROLLARY 44. The Kernel of T is a subspace of U, the Image of T is a subspace of V .

THEOREM 45 (Rank-nullity). Let U be finite-dimensional and let T : U→V be linear. Then dimKerT +
dimImT = dimU.
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EXAMPLE 46 (PS3). The case of a non-zero linear funtional, where dimImT = 1.

PROOF. Let n = dimU , s = dimKerT , r = dimImT . Let {ui}
s
i=1 ⊂ KerT and

{
v j
}r

j=1 ⊂ ImT
be bases for their respective spaces. For each v j choose w j ∈ U such that T w j = v j. We claim that
{ui}

s
i=1∪

{
w j
}r

j=1 is a basis for U , so that dimU = s+ r as claimed.

(1) To see that they span U , let u ∈U . Then T u ∈ ImT so there are b j for which T u = ∑
r
j=1 b jv j =

∑
r
j=1 b jT w j. Then

T

(
u−

r

∑
j=1

b jw j

)
= 0 ,

that is u−∑
r
j=1 b jw j ∈ KerT . It follows that there are ai for which u−∑

r
i=1 b jw j = ∑

s
i=1 aiui

and then

u =
s

∑
i=1

aiui +
r

∑
i=1

b jw j .

(2) To see that the vectors are independent, let {ai}s
i=1 and

{
b j
}r

j=1 be such that ∑
s
i=1 aiui+∑

r
i=1 b jw j =

0. Applying T to both sides, we have

0 =
s

∑
i=1

aiT ui +
r

∑
i=1

b jT w j

=
r

∑
i=1

b jv j .

The independence of
{

v j
}r

j=1 now shows that b j = 0 for all j. Accordingly we have ∑
s
i=1 aiui =

0 and since the ui are also independent we see that the ai = 0 as well.
�

DEFINITION 47. dimKerT is called the nullity of T , sometimes denoted n(T ). dimIm(T ) is called
the rank of T , will be denoted r(T ).

COROLLARY 48. r(T )≤ dimU. Suppose dimV < dimU. Then dimKerT > 0.

EXAMPLE 49. Every system of homogenous linear equations with more unknowns than equations
has a non-trivial solution.

7

2.2. Matrices

DEFINITION 50. Hom(U,V ) is the space of linear maps from U to V .

LEMMA 51. Hom(U,V ) is a vector space under pointwise addition and scalar multiplication.

LEMMA 52. Let T ∈ Hom(Rm,Rn). Then there are numbers ai, j for 1 ≤ i ≤ n, 1 ≤ j ≤ m such that
(T x)i = ∑

m
j=1 ai jx j, that is such that

T x =


a1,1x1 +a1,2x2 + · · ·+a1,mxm

...
ai,1x1 + · · ·+ai,mxm

...
an,1x1 + · · ·+an,mxm

 .
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PROOF. For each j define ai, j by T e j =


a1, j

...
ai, j

...
an, j

. Use linearity. �

DEFINITION 53. Mn,m(R) = R[n]×[m]. Given A ∈Mn,m(R) write Ai j or ai j for the entries.

LEMMA 54. Given A ∈Mn,m(R), the map LAx
def
=


a1,1x1 +a1,2x2 + · · ·+a1,mxm

...
ai,1x1 + · · ·+ai,mxm

...
an,1x1 + · · ·+an,mxm

 is linear.

PROPOSITION 55. The map A 7→ LA is an isomorphism Mn,m(R)→ Hom(Rm,Rn).

• Philosophy: describe linear maps and calculate using matrices.
Now let U,V be vector spaces, and ordered bases

{
u j
}m

j=1 of U , {vi}
n
i=1 of V (here m = dimU , n =

dimV ). Given T ∈ Hom(U,V ) define a matrix A ∈Mn,m(R) by setting T u j = ∑
n
i=1 ai jvi.

DEFINITION 56. Call this the matrix of T with respect to the ordered bases
{

u j
}m

j=1, {vi}
n
i=1.

LEMMA 57. This is a well-defined linear map Hom(U,V )→Mn,m(R).

To see that this is an isomorphism we construct the inverse map: given A we define T by T
(
∑ j x ju j

)
=

∑
n
i=1

(
∑

m
j=1 ai jx j

)
vi (compare with above!)

REMARK 58. Existence of ai j uses that vi are spanning, well-defined uses that they are independent.
Where did we use info about u j?

PROPOSITION 59. Let U be a vector space with basis B, V another vector space and f : B→V . Then
there is a unique linear map T : U →V extending f .

PROOF. Suppose T is such a map. For each u ∈U we can write u = ∑
n
i=1 xiui for some ui ∈ B and

xi ∈ R since B is spanning. Then

T u = T

(
n

∑
i=1

xiui

)
=

n

∑
i=1

xiT ui =
n

∑
i=1

xi f (ui)

so T , if it exists, is unique. Conversely, define T by the relation above. This is OK since every u has a
unique representation in the basis. Linearity easy to check. �

COROLLARY 60. We have an isomorphism Hom(U,V )'Mn,m(R).

COROLLARY 61. Since Mn,m(R)' Rnm,dimHom(U,V ) = dimMn,m(R) = nm = dimU · dimV .

2.3. Composing linear maps, multiplying matrices, space of endomorphisms

• Heisenberg discovers formula for matrix multiplication.
• Challenge: show associativity
• Go back: where did this come from?
• Compose linear maps
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2.4. Linear equations

2.4.1. What is a linear equation?

DEFINITION 62. A linear equation is an equation T x = b where T ∈Hom(U,V ) and b ∈V . If b = 0
we call the equation homogenous.

EXAMPLE 63 (Linear equations). (1)

{
2x+ y = 1
x+2y = 3

(2) d f
dx = e−x2

(3) −1
2ψ ′′(x)+ 1

2x2ψ(x) = Eψ(x)
(4) Fn+1 = Fn +Fn−1

REMARK 64 (Linearity). • The set of solutions to a homogenous equation is the kernel of a
linear map, so any linear combination of solution is again a solution. In phsyics this called the
principle of superposition.
• Recognizing that an equation is linear is important.
• For diff eq the choice of function space in which to define the equation is technical.

LEMMA 65. The equation has solutions iff b ∈ ImT . If v0 is any solution then the set of solutions is
v0 +KerT .

DEFINITION 66. If E ∈ Hom(U,U) is invertible we call the equations T x = b and ET x = Eb equiv-
alent.

LEMMA 67. Equivalent equations have same solutions, this is an equivalence relation. Equivalence
preserves image, hence rank=column rank.

2.4.2. Gaussian Elimination. Now concentrate on the case T = LA ∈ Hom(Rm,Rn).

NOTATION 68. Augmented matrix

LEMMA 69. Solution to diagonal equations

Better:

LEMMA 70. Solution to row echelon form.

DEFINITION 71. An elementary row operation is rescaling a row, or adding a multiple of one row to
another row.

LEMMA 72. These are equivalences. They preserve row space, hence row rank as well.

PROOF. Achieved by multiplication by diag(1, . . . ,di, . . . ,1) (di 6= 0) and by In + cE i j, which are
invertible. �

ALGORITHM 73. Find first column with a non-zero entry, exchange rows to make it in first row.
Subtract multiples to make zeroes below. Find next column ...

COROLLARY 74. Every equation Ax = b is equivalent to an equation (MA)x = Mb where M is a
product of elementary matrices and MA is in row eschelon form (or row-reduced form).

DEFINITION 75. Pivot.
In row-reduced form, a variable without pivot is called free. General solution obtained by arbitrarily

valuing the free variables (gives new proof of dimension formula).
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2.4.3. Inverting matrices using Gaussian Elimination. Start with the pair of matrices A0 =A,B0 =
I. At each step multiply both sides by an elementary matrix En to get An+1 = En+1An, Bn+1 = En+1Bn.

OBSERVATION 76. The product B−1
n An is an invariant of the algorithm: suppose that B−1

n+1An+1 =

B−1
n E−1

n+1En+1An = B−1
n An.

Now B−1
0 A0 = A, so if An = I we’ll get B−1

n = A, that is Bn = also.



CHAPTER 3

Determinants

3.1. The determinant of a matrix

Notation: for a square matrix A ∈ Mn(R) write ai j for the entries, Ai j for the minor, the matrix
Ai j ∈Mn−1(R) obtained by deleting the ith row and jth column.

DEFINITION 77. If A∈M1(R) set detA= a11. If A∈Mn(R) for n≥ 1 set detA=∑
n
j=1(−1)1+ ja1 j detA1 j.

EXAMPLE 78. det
(

a b
c d

)
=

∣∣∣∣a b
c d

∣∣∣∣= ad−bc.

EXAMPLE 79. det(diag(a1, . . . ,an))= a1 det(diag(a2, . . . ,an)) so by induction det(diag(a1, . . . ,an))=
∏

n
i=1 ai.

DEFINITION 80. A matrix A is called lower-triangular if its entries above the main diagonal are zero:
ai j = 0 if j > i.

LEMMA 81. Let A be lower-triangular. Then detA = ∏
n
i=1 aii.

PROOF. Every A∈M1(R) is lower triangular and the formula holds by definition. Suppose this holds
for n×n matrices and let A ∈Mn+1(R) be upper-triangular. Then every entry except a11 in the first row
is zero, so detA = a11 detA11. Now A11 is a lower-triangular matrix as well, and its diagonal consists of
a22, . . . ,an+1,n+1. Thus detA = a11 ∏

n+1
i=2 aii = ∏

n+1
i=1 aii. �

3.2. Determinants of linear maps

3.2.1. Area of paralellograms in the plane.

3.2.2. Area forms in the plane. Let V be a two-dimensional vector space.

DEFINITION 82. A function A : V 2→ R is an area form if
(1) (“bilinearity”) A is linear in each argument separately.
(2) (“alternativity”) For all u ∈V , A(u,u) = 0.

LEMMA 83. The space of area forms is a subspace of RV 2
.

REMARK 84. Warning about multilinearity: this means A(a+b,c+d) = A(a,c)+A(a,d)+A(b,c)+
A(b,d) 6= A(a,c)+A(b,d). Note that multiplication is multilnear.

LEMMA 85. Let V be a vector space of any dimension. A bilinear form A : V 2→ R is alternating iff
its antisymmetric, in that A(u1,u2) =−A(u2,u1) for all u1,u2 ∈V .

PROOF. Suppose A is alternating and consider A(u1 +u2,u1,u1 +u2). We have

0 = A(u1 +u2,u1,u1 +u2)

= A(u1,u1)+A(u1,u2)+A(u2,u1)+A(u2,u2)

= A(u1,u2)+A(u2,u1) .

Conversely, suppose A is antisymmetric. Then exchanging the two arguments gives A(u,u) = −A(u,u)
and hence 2A(u,u) = 0 and A(u,u) = 0. �

15
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REMARK 86. The argument depended on 1+1 = 2 being non-zero. There are situations where this
isn’t the case, which is why alternativity is the stronger hypothesis.

Now let {v1,v2} be an ordered basis for V . Then given (u1,u2) ∈ V 2 there are ai j such that u1 =
a11v1 +a12v2 and u2 = a21v1 +a22v2 so that for any area form A, by the distributive remark above

A(u1,u2) = a11a21A(v1,v1)+a11a22A(v1,v2)+a12a21A(v2,v1)+a12a22A(v2,v2)

= a11a22A(v1,v2)−a12a21A(v1,v2)

= [a11a22−a12a21]A(v1,v2) .

It follows that A is determined by the single number A(v1,v2). Since evaluation is a linear map on
functions, we have shown that the following linear map is injective:

{Area forms} → R
A 7→ A(v1,v2) .

COROLLARY 87. The space of area forms is at most 1-dimensional.

LEMMA 88. The map
((

a
c

)
,

(
b
d

))
7→ ad−bc is a non-zero area form on R2.

COROLLARY 89. The space of area form on a 2-dimensional space is exactly 1-dimensional.

Now let T ∈ End(V ). Then for any area form A, (u1,u2) 7→ A(T u1,T u2) is also an area form (this
is checked in PS8), and this map on area forms is linear. Since that space is 1d, there is c such that
A(T u1,T u2) = cA(u1,u2) for all area forms A and vectors u1,u2.

DEFINITION 90. The determinant detT is that number.

EXERCISE 91. Let T be represented by the matrix A. Then detT = detA.

3.2.3. Volume forms. Fix an n-dimensional vector space V .

DEFINITION 92. Let f : V n→ R be a function.
(1) Call f multi-linear if it’s linear in every argument separately.
(2) Call f alternating if exchanging any two arguments reverses the sign.

Call alternating multi-linear functions volume forms.

LEMMA 93. Let f : V k→V k be multilinear. Then f is alternating iff f has the property that whenever
some argument vanishes [or two are equal] f vanishes.

PROOF. Given i 6= j g(ui,u j)
def
= f (a1, . . . ,ai−1,ui,ai+1, . . . ,a j−1,u j,a j+1, . . . ,an) is a bilinear func-

tion. Now apply Lemma 85. �

Now fix an ordered basis {vi}
n
i=1⊂V . Then given (u1, . . . ,un)∈V n let ai j be such that ui =∑

n
j=1 ai jv j.

Then for any volume form f we have

f (u1, . . . ,un) = f

(
n

∑
j1=1

a1, j1v j1, · · · ,
n

∑
jn=1

an, jnv jn

)

= ∑
( j1,..., jn)∈{1,··· ,n}n

(
n

∏
`=1

a`, j`

)
f
(
v j1, · · · ,v jn

)
= ∑

σ a rearrangement

(
n

∏
`=1

a`,σ(`)

)
f
(

vσ(1), · · · ,vσ(n)

)
= ∑

σ

(−1)σ

(
n

∏
`=1

a`,σ(`)

)
f (v1, . . . ,vn)
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so again f is determined by f (v1, . . . ,vn).

COROLLARY 94. The space of volume forms is a most 1-dimensional.

THEOREM 95. The map f 7→ f (v1, · · · ,vn) is an isomorphism of vector spaces.

PROOF. We show that the map A 7→ detA of Definition 77 is a non-zero volume form on Rn (thought
of as a function of the columns), by induction on n.

The case n = 1 is easy, and n = 2 was done above. Now try n+ 1. We first show that the function
is multilinear: let A ∈ Mn+1(R) and suppose that ai,k = βbi + γci for some particular k. Let B be the
matrix where every column is the same as A except the kth column is (bi) and similarly define C. Then
for j 6= k, the minors A1 j,B1 j,C1 j have all columns the same except the one coming from the kth column
– that column in A1 j is the combination of the respective columns in B1 j,C1 j. By induction det(A1 j) =
β detB1 j + γ detC1 j. For j = k we see that A,B,C all have the same minor. It follows that

detA =
n+1

∑
j=1

(−1)1+ ja1 j detA1 j

= ∑
j 6=k

(−1)1+ ja1 j
(
β detB1 j + γ detC1 j

)
+(−1)1+k(βb1 + γc1)detA1k

= β

[
∑
j 6=k

(−1)1+ ja1 j detB1 j +(−1)1+kb1 detB1k

]
+ γ

[
∑
j 6=k

(−1)1+ ja1 j detC1 j +(−1)1+kc1 detC1k

]
= β detB+ γ detC .

Now suppose that the kth and `th columns of A are equal. Then the same is true in every minor A1 j
unless j = k or j = `. It follows that

detA = (−1)1+ka1k detA1k +(−1)1+`a1` detA1` .

Now a1k = a1`, and A1` is obtained from A1k by repeatedly taking the `th column and exchanging it with
its left neighbour `− k−1 times. It follows that

detA = a1k(−1)1+k
(

detA1k +(−1)`−k(−1)`−k−1 detA1k

)
= 0 .

Finally it’s easy to check by induction that det In = 1. �

REMARK 96. The textbook shows by a very similar induction that this is also a volume form when
considered as a function of the rows.

COROLLARY 97. Let T : V → V . Then f 7→ f (T · , · · · ,T ·) is a linear map on a 1d space, hence of
the form f 7→ c f .

DEFINITION 98. Call this constant the determinant of T .

PROPOSITION 99. Let A be a matrix of T wrt the basis {vi}
n
i=1 ⊂V . Then detA = detT . Here detA

is given by Definition 77 while detT is given by Definition 98.

PROOF. f ∈ (V n)∗ be the volume form defined as follows: given {ui}
n
i=1 let ai j be such that u j =

∑
n
i=1 ai jvi and let f (u1, . . . ,un)= det

(
(ai j)

n
i, j=1

)
(check that this is a volume form!), Then f (v1, . . . ,vn)=

det(In) = 1. We thus have

detT = (detT ) f (v1, . . . ,vn) = f (T v1, . . . ,T vn) = detA

Since the matrix
(
ai j
)

such that T v j = ∑i ai jvi is exactly the matrix A of T in the given basis. �
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3.3. Properties of determinants

Fix an n-dimensional space V .

PROPOSITION 100. For all T,S ∈ End(V )

(1) det IdV = 1.
(2) det(T S) = detT · detS.
(3) detT 6= 0 iff T is invertible

PROOF. (1) Any volume form is unchanged by composition with the identity transformation. For (2)
let f be a volume form, and let fT be the form fT (u1, . . . ,un) = f (T u1, . . . ,T un). Then

(det(T D)) f (u1, . . . ,un)= f (T Su1, . . . ,T Sun)= fT (Su1, . . . ,Sun)= (detS) fT (u1, . . . ,un)= (detS)(detT ) f (u1, . . . ,un) .

Finally, if T S = Id then (detT )(detS) = 1 no neither is zero. If T is not invertible let v1 ∈ KerT
and extend this to a basis. Let f any volume form. Then (detT ) f (v1, · · · ,vn) = f (T v1, · · · ,T vn) =
f (0, · · ·) = 0. Since a non-zero volume form is non-zero on a basis we see that detT = 0. �

THEOREM 101. Let A,B be two matrices related by a sequence of row or column combinations. Then
detA = detB.

PROOF. If B = ErEr−1 · · ·E1AE ′1 ·E ′s then detA = detB since det(In + cE i j) = 1 where i 6= j. �

PROPOSITION 102. detA = detAt .

PROOF. Exercise. �

COROLLARY 103. Let A be upper-triangular, then detA = ∏
n
i=1 aii.

COROLLARY 104 (Minor expansion). detA = ∑
n
j=1(−1)i+ jai j det(Ai j) = ∑

n
i=1(−1)i+ jai j det(Ai j).

PROOF. By Prop 102, �

EXAMPLE 105.

∣∣∣∣∣∣
1 2 3
3 1 0
3 3 −2

∣∣∣∣∣∣ R3−R2=

∣∣∣∣∣∣
1 2 3
3 1 0
0 2 −2

∣∣∣∣∣∣ = 2

∣∣∣∣∣∣
1 2 3
3 1 0
0 1 −1

∣∣∣∣∣∣ R1+3R3= 2

∣∣∣∣∣∣
1 5 0
3 1 0
0 1 −1

∣∣∣∣∣∣ = −2
∣∣∣∣1 5
3 1

∣∣∣∣ =
−2(1−15) = 28.∣∣∣∣∣∣

1 2 3
3 1 0
3 3 −2

∣∣∣∣∣∣ R1−2R2=

∣∣∣∣∣∣
−5 0 3
3 1 0
3 3 −2

∣∣∣∣∣∣ R3−3R2=

∣∣∣∣∣∣
−5 0 3
3 1 0
−6 0 −2

∣∣∣∣∣∣=−2

∣∣∣∣∣∣
−5 0 3
3 1 0
3 0 1

∣∣∣∣∣∣ R1−3R3= −2

∣∣∣∣∣∣
−14 0 0

3 1 0
3 0 1

∣∣∣∣∣∣=−2(−14 ·1 ·1)=

28.



CHAPTER 4

Eigenvalues, eigenvectors, and diagonalization

4.1. Similarity and change of basis

Let V be a vector space with ordered basis B = {vi}
n
i=1. To a linear map T ∈ End(V ) we associated a

matrix A consisting of the coefficients of the T v j in the basis:

T v j =
n

∑
i=1

ai jvi .

QUESTION 106. What happens if we instead use a different basis?

So let C = {uk}
n
k=1 ⊂V be another basis. We can expand each uk in the original basis, obtaining the

change of basis matrix S, whose entries are defined by

u` =
n

∑
j=1

s j`v j .

Note that the columbs of S are exactly the expansions of the elements of C in the basis B, and that S is
the matrix with respect to B of the linear map R ∈ End(V ) defined by Rv` = u`.

Applying T to both sides we get:

T u` = T

(
n

∑
j=1

s j`v j

)

=
n

∑
j=1

s j`T v j

=
n

∑
j=1

s j`

n

∑
i=1

ai jvi

=
n

∑
i=1

(
n

∑
j=1

ai js j`

)
vi .

Note that the prentheses are exactly give the i`th entry of the matrix AS. Next, expand vi in the basis C.
Suppose vi = ∑

n
k=1 tkiu` (so the tki are the entries of the reverse change-of-basis matrix). We then have

vi =
n

∑
k=1

tkiu` =
n

∑
k=1

tki

n

∑
j=1

s jkv j

=
n

∑
j=1

(
n

∑
k=1

s jktki

)
v j .

But vectors have a unique representation in the basis, and we get

n

∑
k=1

s jktki =

{
1 j = i
0 j 6= i

= δi j

19
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is the i jth entry of the identity matrix. In other words, the tki are the entries of the inverse matrix S−1 and
the relation is

vi =
n

∑
`=1

(s−1)kiuk

and hence

T u` =
n

∑
i=1

(
n

∑
j=1

ai js j`

)
vi

=
n

∑
i=1

(
n

∑
j=1

ai js j`

)
n

∑
k=1

(s−1)kiuk

=
n

∑
k=1

(
n

∑
i=1

n

∑
j=1

(s−1)kiai js j`

)
uk

=
n

∑
k=1

(
S−1AS

)
k` uk .

But on the other hand by definition the coefficients here define the matrix of T in the basis C, and we
have proved

PROPOSITION 107. Let A,B∈Mn(R) be the matrices of T ∈End(V ) wrt the bases {vi}
n
i=1 ,{uk}

n
k=1⊂

V respectively. Let S ∈Mn(R) be the change-of-basis matrix, defined by u` = ∑
n
j=1 s j`v j. Then

B = S−1AS .

DEFINITION 108. Two matrices A,B ∈ Mn(R) are similar if there is a matrix S ∈ Mn(R) such that
B = S−1AS. Two linear maps S,T ∈ End(V ) are similar if there is an invertible map R ∈ End(V ) such
that S = R−1T R.

OBSERVATION 109. Two matrices are similar iff they represent the same linear map in different
bases.

EXERCISE 110. (PS6) Similarity is an equivalence relation.

4.2. Motivation

Fix a vector space V .

DEFINITION 111. Let T ∈ End(V ). Suppose we have a scalar λ and a non-zero v ∈ V such that
T v = λv. We then say that λ is an eigenvalue of T , and that v is an eigenvector corresponding to the
eigenvalue λ .

REMARK 112. The equation is non-linear! [but linear in v for λ fixed]

Why care?

4.2.1. Diagonlization. Suppose we have a basis consisting of eigenvectors. Then the matrix is diag-
onal, hence simple (for example we can easily find the maqtrix of T 2 in that basis).

4.2.2. Solve differential equations. 1,cos(2πkx), sin(2πkx) are a basis for functions on the circle
on which d2

dx2 acts by scalars. This is a good basis in which to study differential equations.
Note that eigenvalues are given by non-positive reals.
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4.2.3. Solve difference equations. Let L : RN→ RN be the left-shift operator. Then for any r ∈ R,
(rn)n≥0 is an eigenvector with eigenvalue r.

Now let Fn be the Fibbonaci sequence satisfying Fn+2 = Fn+1 +Fn. From our earlier work on dif-
ference equations we know to write this as

(
L2−L−1

)
F = 0 and that the space of solutions is two-

dimensional. Now let r1,2 =
1±
√

5
2 be the two roots of r2− r−1 = 0. It follows that

{(
rn

1
)

n≥0 ,
(
rn

2
)

n≥0

}
both belong to Ker

(
L2−L−1

)
. They are not propoprtional, hence a basis. We have proven:

THEOREM 113. Let Fn be the Fibonnacci sequence with F0 = 0, F1 = 1. Then Fn =
1√
5

((
1+
√

5
2

)n
−
(

1−
√

5
2

)n)
.

PROOF. There are A,B such that Arn
1 +Brn

2 = Fn for all n. Specifically for n = 0,1 we see:

A+B = 0
Ar1 +Br2 = 1

and this has the solution A =−B = 1√
5
. �

COROLLARY 114. F1/n
n → 1+

√
5

2 and 1√
5

(
1+
√

5
2

)n
is exponentially close to being an integer.

4.2.4. Quantum Mechanics. Observables are linear operator

4.2.5. PCA = FA.

4.3. The characteristic polynomial, trace and determinant

4.3.1. Work by hand.

EXAMPLE 115. Let A=

(
4 3
1 2

)
. Then we need to solve

(
4 3
1 2

)(
x
y

)
= λ

(
x
y

)
, that is

{
(4−λ )x+3y = 0
x+(2−λ )y = 0

.

Suppose (x,y,λ ) is a solution. Then x = (λ −2)y so

(4−λ )(λ −2)y+3y = 0

that is (
λ

2−6λ +5
)

y = 0 .
Thus either y = 0 at which point x = 0 and λ can be arbitrary, or y 6= 0 at which point λ ∈ {1,5} and

x = (λ −2)y for arbitrary y (check that these are solutions!)

CONCLUSION 116. The eigenvalues of A are 1,5 and the corresponding eigenspaces are Span
{(
−1
1

)}
,

Span
{(

3
1

)}
.

4.3.2. The char poly. Recap:
• The eigenvalue problem is non-linear – we found λ as roots of a polynomial.
• Given λ , the problem is purely linear.

Fix V , T ∈ End(V ). Then λ is an eigenvalue iff there is non-zero v such that T v = λv that is iff
Ker(λ IdV −T ) 6= {0}. If V is finite-dimensional this is equivalent to λ − T being non-invertible and
hence to det(λ IdV −T ) = 0.

DEFINITION 117. Let V be finite dimensional. The characteristic polyonomial of T ∈ End(V ) is
p(x) = pT (x) = det(x IdV −T ).

REMARK 118. Best to think of the matrix of x IdV −T as a matrix in Mn(R[x]), showing that the
determinant is indeed a polynomial.
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We have proved:

THEOREM 119. λ is an eigenvalue of T iff λ is a root of pT (x).

REMARK 120. In practice this is a terrible way of finding eigenvalues – can’t find roots of polynomi-
als.

EXERCISE 121. The characteristic polynomial is always monic of degree is dimV . Any such poly-
nomial is the char poly of a linear map.

EXAMPLE 122. The characteristic polynomial of
(

4 3
1 2

)
is x2−6x+5.

PROOF. Can do direct calculation, but also note that must be monic and divisible by (x− 5)(x− 1)
since those are eigenvalues. �

REMARK 123. The polynomial doesn’t have to have real roots (consider
(

1
−1

)
), but the F.T.Algebra

says that always factor over complex numbers (exercize: the 2x2 case).

The following aside will help us identify “obvious” roots:

THEOREM 124 (Rational roots). Let p(x) ∈ Z[x] satisfy p(x) = ∑
d
i=0 aixi with a0ad 6= 0. Suppose that

p( r
s) = 0 with r,s ∈ Z relatively prime, s 6= 0. Then r|a0, s|ad .

PROOF. Clear denominators to get ∑
d
i=0 aisd−iri = 0. Now a0sd = −r

(
∑

d
i=1 aisd−iri−1) and adrd =

−s
(

∑
d−1
i=0 ais(d−1)−iri

)
. �

4.4. Properties and diagonalization

Fix V , T ∈ End(V ).

DEFINITION 125. Vλ = Ker(V −λ IdV ); Spec(λ ) = {λ ∈ C |Vλ 6= {0}}.

LEMMA 126. Let {vi}
r
i=1 be eigenvectors of T with distinct eigenvalues λi. Then the {vi} are inde-

pendent.

PROOF. Consider a minimal dependence and apply T . �

COROLLARY 127. The sum ∑λ Vλ is direct. In particular, at most n distinct eigenvalues (also follows
from char poly).

DEFINITION 128. Let λ be a scalar. The algebraic multiplicity of λ as an eigenvalue is the maximum
r such that (x−λ )r divides pT (λ ). The geometric multiplicity is dimVλ .

PROPOSITION 129. Algebraic≥Geometric

PROOF. Let {vi}
r
i=1 be a basis for Vλ . Complete this into a basis {vi}

n
i=1 for V . Let A be the matrix

for T in this basis. Then pA(x) = (x−λ )r pB(x) for the lower-right square B of A (repeatedly expand by
columns).

Let {vi}
r
i=1 span the λ -eigenspace; complete to a basis. Let A be matrix by this basis, and expand

det(xIn−A) by first r columns to see that (x−λ )r divides pA(x). �

EXAMPLE 130.

 1
1

−2 −1

,
(

1 1
1

)
.

DEFINITION 131. Call T diagonable (or diagonalizable) if V has a basis consisting of eigenvectors.
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This is equivalent to saying that in some basis the matrix of T is diagonal.

LEMMA 132. Let T be a linear map, {vi}
n
i=1,

{
u j
}n

j=1 two bases of V . Let A,A′ be the matrices of
T wrt the two bases. Let B be the matrix whose jth column is the decomposition of u j in vi. Then S is
invertible and A′ = B−1AB.

PROOF. B is the matrix of the map S such that Svi = ui wrt basis vi .Maps basis to basis so invertible.
B−1 is matrix of S−1ui = vi in basis vi, so columns are decomposition of v j in terms of ui. Now

T u j = T
(
∑i bi jvi

)
= ∑i bi jT vi = ∑i bi j ∑k akivk = ∑i,k,l akibi j ∑l(b−1)lkuk = ∑k

(
B−1AB

)
k j uk. �

THEOREM 133. Let A ∈Mn(R) and let {vi}
n
i=1 be linearly independent such that Avi = λivi. Let S be

the matrix with columns vi. Then S is invertible and S−1AS = diag(λ1, . . . ,λn). Equivalently, A = SDS−1

where D = diag(λ1, . . . ,λn).

EXAMPLE 134.
(

4 3
2 1

)
has eigenvectors

(
−1
1

)
,

(
3
1

)
.

LEMMA 135. Let A,B be similar matrices. Then they are the matrices of the same linear map in
different bases.

4.5. Diversion: Graph eigenvalues and PageRank



CHAPTER 5

Inner product spaces

In this chapter the field of scalars is either R or C.

5.1. Inner product spaces

5.1.1. Motivation and basic examples. In Euclidean space En we have a notion of distance between
points. Equivalently we have a notion of distance in Rn.

5.1.2. Definition. For real vector spaces

DEFINITION 136. Let V be a vector space over the real field. An inner product on V is a map
〈 · , · 〉 : V ×V → R such that:

(1) (Bilinearity) The map is linear in the second coordinate: 〈u,αv+βw〉= α 〈u,v〉+β 〈u,w〉.
(2) (Symmetry) 〈u,v〉= 〈v,u〉.
(3) (Positivity) 〈u,u〉 ≥ 0 with equality iff u = 0.

An inner product space is a pair (V,〈 · , · 〉) where V is a real vector space and 〈 · , · 〉 is an inner product
on V .

For complex scalars positivity requires a more complicated definition:

DEFINITION 137. Let V be a vector space over the complex field. A hermitian product on V is a map
〈 · , · 〉 : V ×V → C such that:

(1) (Conjugate linearity) The map is linear in the second coordinate: 〈u,αv+βw〉 = α 〈u,v〉+
β 〈u,w〉.

(2) (Conjugate symmetry) 〈u,v〉= 〈v,u〉.
(3) (Positivity) 〈u,u〉 ≥ 0 with equality iff u = 0.

A hermitian space is a pair (V,〈 · , · 〉) where V is a complex vector space and 〈 · , · 〉 is a hermitian product
on V .

When u = v, axiom (2) reads 〈u,u〉= 〈u,u〉, ensuring that 〈u,u〉 ∈ R so that axiom 3 makes sense.

REMARK 138. We often abuse terminology and use “inner product space” in both contexts.

EXAMPLE 139. The standard inner product on Rn is the one from above. The analogues standard
inner product on Cn is

〈z,w〉=
n

∑
i=1

zi ·wi .

EXAMPLE 140. Let C(a,b) be the space of real- or complex-valued functions on the interval [a,b].
Setting

〈 f ,g〉=
∫ b

a
f (x)g(x)dx

defines an inner (respectively) hermitian product on C(a,b).
24
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PROOF. Linearity is immediate from properties of the Riemann integral and conjugate symmetry is
clear. If f = g we have

〈 f , f 〉=
∫ b

a
| f (x)|2 dx .

The is non-negative since the integrand is non-negative. Also, since f is continuous if f is non-zero then
| f | is positive on a subinterval, and the integral is strictly positive. �

EXAMPLE 141. (PS12) On Mn(C) set 〈A,B〉= Tr
(
A†B

)
where (A†)i j = Ai j.

LEMMA 142. Let V be an inner product space. Then the inner product is linear in the first variable
(conjugate-linear if the scalars are complex).

PROOF. We have

〈αu+βv,w〉= 〈w,αu+βv〉

= α 〈w,u〉+β 〈w,v〉

= α〈w,u〉+β 〈w,v〉

= α 〈u,w〉+β 〈v,w〉 .
�

LEMMA 143 (Restriction). Let V be an inner product space and let W be a subspace. Then (W,〈 · , · 〉 �W×W )
is an inner product space. If V is complex then (V,ℜ〈 · , · 〉) is a real inner product space when we treat
V as a real vector space.

PROOF. All the axioms are universal. �

5.2. The Cauchy–Schwartz inequality

Fix an inner product space V .

DEFINITION 144 (The norm). The norm of u ∈ V is the non-negative real number ‖u‖ =
√
〈u,u〉

(recall that this 〈u,u〉 is always a non-negative real number).

By the axioms for an inner product space we have ‖u‖ = 0 iff u = 0. We also observe that the norm
is 1-homogenous:

‖αu‖=
√
〈αu,αu〉=

√
ᾱα 〈u,u〉

=
√

ᾱα
√
〈u,u〉

= |α|‖u‖ .

LEMMA 145 (Cauchy–Schwartz). Let u,v ∈V . Then

|〈u,v〉| ≤ ‖u‖‖v‖ ,
with equality if and only if u,v are multiples of each other.

PROOF. If 〈u,v〉= 0 there is nothing to prove. Otherwise there is a number α of modulus 1 such that
α 〈u,v〉= |〈u,v〉|. Consider then the real-valued function

f (t) = ‖tu+αv‖2 = 〈tu+αv, tu+αv〉 .
Using the bilinearity we have

f (t) = t2 〈u,u〉+ t 〈u,αv〉+ t 〈αv,u〉+ |α|2 〈v,v〉 .
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Observe now that 〈u,αv〉= α 〈u,v〉= |〈u,v〉| is real, hence equal to its own complex conjugate, and we
get that 〈αv,u〉= 〈u,αv〉. We also have 〈u,u〉= ‖u‖2 and 〈v,v〉= ‖v‖2 and |α|= 1 so in the end

f (t) = t2 ‖u‖2 +2t |〈u,v〉|+‖v‖2 .

Note that this is a quadratic function with positive real coefficients: if 〈u,u〉 or 〈v,v〉 vanishes than one of
u,v would vanish and then their inner product would vanish as well. Completing the square, we have

f (t) =
(

t ‖u‖+ |〈u,v〉|‖u‖

)2

+‖v‖2− |〈u,v〉|
2

‖u‖2 .

Now as the norm of a vector we have f (t)≥ 0 for all t, so we must have

‖v‖2− |〈u,v〉|
2

‖u‖2 ≥ 0

Which can be rearranged to form the desired inequality. In addition equality holds iff there is t such that
f (t) = 0, that is iff there is t such that tu+αv = 0 or (assuming u,v 6= 0) that u =−t−1αv. �

PROPOSITION 146 (Minkowsky’s inequality; “triangle inequality”). We have ‖u+ v‖ ≤ ‖u‖+ ‖v‖
(and also ‖αu‖= |α|u and ‖u‖= 0 ⇐⇒ u = 0).

PROOF. We apply CS:

‖u+ v‖2 = 〈u+ v,u+ v〉
= 〈u,u〉+ 〈u,v〉+ 〈v,u〉+ 〈v,v〉

≤ ‖u‖2 +‖u‖‖u‖+‖v‖‖u‖+‖v‖2

= (‖u‖+‖v‖)2 .

�

COROLLARY 147. The function d(u,v) = ‖v−u‖ is a metric on V : d : V ×V → R≥0 satisfies
d(u,v) = d(v,u), d(u,v) = 0 ⇐⇒ u = v and d(u,w)≤ d(u,v)+d(v,w).

In a real inner product space we observe that for any non-zero vectors u,v we have

−1≤ 〈u,v〉
‖u‖‖v‖

≤ 1

and in particular there is a unique angle θ ∈ [0,π] such that

〈u,v〉= ‖u‖‖v‖cosθ .

DEFINITION 148. We call θ the angle between u,v.

5.3. Orthogonality

5.3.1. Intro. Fix an inner product space V . We identify particular configurations of vectors which
are convenient for linear algebra. Three ideas:

(1) Orthogonal and orthonormal systems
(2) The Gram–Schmidt procedure
(3) The orthogonal complement

DEFINITION 149. Two vectors u,v∈V are orthogonal if 〈u,v〉= 0, (for non-zero vectors, if the angle
between them if π

2 ). In that case we write u⊥ v
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5.3.2. Orthogonal and orthonormal systems.

DEFINITION 150. A set of vectors B ⊂ V is an orthogonal system if the vectors are non-zero and
mutually orthogonal.

LEMMA 151. An orthogonal system is linearly independent.

PROOF. Suppose we have a linear combination
n

∑
i=1

aivi = 0

where ai are scalars and vi ∈ B are distinct. Taking inner product with v j we have

0 =
〈
v j,0

〉
=

〈
v j,

n

∑
i=1

aivi

〉

=
n

∑
i=1

a j
〈
v j,vi

〉
linearity

= a j
〈
v j,v j

〉
i 6= j⇒ v j ⊥ vi .

Since
〈
v j,v j

〉
> 0 we have a j = 0. �

Orthogonality is powerful because determining the coefficients of a vector with respect to an orthog-
onal system does not require solving systems of linear equations:

LEMMA 152. Let B be an orthogonal system, and let v ∈ Span(B) have the form v = ∑
n
i=1 aivi where

vi ∈ B are distinct. Then

a j =

〈
v j,v

〉〈
v j,v j

〉 .
PROOF. Same calculation as above. �

OBSERVATION 153. The coefficient a j depends only on v j – not on the whole system. Note that this
is completely false for general basis B.

Clearly rescaling the vectors does not change orthogonality, and helps with calculation above. Ac-
cordingly we set

DEFINITION 154. An orthorgonal system B is orthonormal if every v ∈ B has norm 1. It is complete
if the only vector orthogonal to the entire system is the zero vector.

REMARK 155. Complete orthonormal systems are often called “orthonormal bases”; this is often
abbreviated o.n.b.

LEMMA 156. Suppose dimV = n < ∞. Then every complete orthonormal system in V is a basis.

PROOF. Let B = {vi}
m
i=1 ⊂ V be a complete orthonormal system and let v ∈ V . For each vi ∈ B let

ai = 〈vi,v〉 as above, and consider the vector

v−
m

∑
i=1

aivi .

We will verify that this vector is orthogonal to B, and it will follow that it is the zero vector, in other
words that v = ∑

m
i=1 aivi.
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Indeed 〈
v j,v−

m

∑
i=1

aivi

〉
=
〈
v j,v

〉
−

m

∑
i=1

ai
〈
v j,vi

〉
= a j−a j = 0 .

�

EXAMPLE 157. The infinite-dimensional situation is more complicated, because the natural no-
tions of span involve series of vectors. As an example, let C(R/Z) denote the space of continuous
complex-valued functions on R which are Z-periodic, that is functions such that f (x+ 1) = f (x) for
all x, equipped with the inner product 〈 f ,g〉 =

∫ 1
0 f (x)g(x)dx. Then the functions en(x) = e2πinx are an

orthonormal system in C(R/Z): it’s easy to check that they are orthogonal, but completeness is more
involved (given f ∈ C(R/Z) which is non-zero and perpendicular to all these functions, one uses the
Stone–Wierestrass Theorem to product an element g = ∑|n|≤N anen in the span which is close to f point-
wise. Since |( f −g)(x)| ≤ ε for all x we have ‖ f −g‖2 ≤ ε2 (plug into the integral). On the other hand
f ⊥ g gives

〈 f −g, f −g〉= 〈 f , f 〉+ 〈g,g〉−〈 f ,g〉−〈g, f 〉
= 〈 f , f 〉+ 〈g,g〉 ≥ 〈 f , f 〉

producing a contradiction as soon as ε < ‖ f‖.
(If you prefer the real-valued version of this, use the orthonormal system {1}∪

{√
2sin(2πnx),

√
2cos(2πnx)

}∞

n=1
instead).

5.3.3. Gram–Schmidt.

5.3.4. Orthogonality and the orthogonal complement.

DEFINITION 158. A vector u is orthogonal to a subset S⊂V if 〈u,v〉= 0 for all v∈ S. The orthogonal
complement of a subset S is S⊥ = {u ∈V | u⊥ S}.

LEMMA 159. The orthogonal complement of a subset is a subspace.

PROOF. By definition S⊥ =
⋂{

v⊥
}

v∈S so it’s enough to show that the orthogonal complement of
each vector is a subspace. But

v⊥ = {u | 〈u,v〉= 0}
= {u | 〈v,u〉= 0}
= Ker(〈v, · 〉) .

�

PROPOSITION 160 (Orthogonal decomposition). Let W ⊂V be a subspace. Then W ∩W⊥= {0} and
V =W ⊕W⊥.

5.4. Linear maps and : the adjoint

As usual we fix an inner product space (V,〈 · , · 〉), which we assume finite-dimensional, with n =
dimV .

So far we’ve taken a geometric point of view: focusing on distances, angles, orthogonality, etc. We
now take an algebraic point of view: how inner products interact with the rest of linear algebra. We begin
with linear functional.
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REMARK 161. The results of this section apply in the infinite-dimensional case under further ana-
lytic assumptions such as completeness of the space and compactness of the linear operators. Interested
students should look up the theory of Hilbert spaces.

5.4.1. The Riesz Representation Theorem.

OBSERVATION 162. Let u ∈ V . We then get scalar-valued function on V by setting ϕu(v) = 〈u,v〉.
This is actually a linear functional (by the definition of inner product!). The inner product thus gives an
linear functional for each u. In fact we get all linear functionals this way.

LEMMA 163 (Riesz Representation Theorem, finite-dimensional case). For each ϕ ∈ V ∗ there is a
unique u ∈V such that ϕ = ϕu. Furthermore, this bijection respects addition but is anti-linear for scalar
multiplication: ϕcu = c̄ϕu.

PROOF. We prove the uniqueness first, Suppose ϕu = ϕu′ , that is 〈u,v〉 = 〈u′,v〉 for all v ∈ V . This
statement is equivalent to

0 = 〈u,v〉−
〈
u′,v
〉
=
〈
u−u′,v

〉
and now choosing v = u−u′ shows ‖u−u′‖= 0 so u = u′.

For existence, let ϕ ∈V ∗. If ϕ is the zero functional then ϕ =ϕ0 and we are done, so suppose ϕ is non-
zero. Then its image is 1-dimensional so by the rank-nullity theorem we have dimKerϕ = n−1. Since
V = (Kerϕ)⊕ (Kerϕ)⊥ we have dim(Kerϕ)⊥ = 1 so we can choose a non-zero vector t ∈ (Kerϕ)⊥ and

set u = ϕ(t)
〈t,t〉 t. We claim that ϕ = ϕu. Indeed any v ∈V can be uniquely written as a sum of two vectors,

one each from Kerϕ and (Kerϕ)⊥. In other words we can write v = w+ct for some w∈Kerϕ and scalar
c (recall that (Kerϕ)⊥ is one-dimensional hence spanned by t). Then

ϕ(v) = ϕ(w+ ct) = ϕ(w)+ cϕ(t) = cϕ(t)

since w ∈ Kerϕ . On the other hand t ∈ (Kerϕ)⊥ and w ∈ Kerϕ means 〈t,w〉= 0 and hence

ϕu(v) = 〈u,v〉

=

〈
ϕ(t)
〈t, t〉

t,w+ ct

〉

=
ϕ(t)
〈t, t〉

[〈t,w〉+ c〈t, t〉]

=
ϕ(t)
〈t, t〉

c〈t, t〉= cϕ(t)

and thus ϕ(v) = ϕu(v). �

EXERCISE 164. (PS12) Use the uniqueness to prove the claims about the (anti) linearity of the map.

5.4.2. The adjoint. If we interpret column vectors as n×1 matrices, then the standard inner product
on Rn is given by 〈u,v〉= uT ·v where the dot denotes matrix multiplication. Then for any linear map A
we can use the formula (AB)T = BT AT and the associativity of multiplication to get:

〈u,Av〉= uT · (A ·v) =
(
uT ·A

)
·v

=
(

uT ·
(
AT)T

)
·v

=
(
AT u

)T ·v
=
〈
AT u,v

〉
.
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In other words, the transpose matrix AT is the matrix such the following formula holds:

〈u,Av〉=
〈
AT u,v

〉
for all u,v ∈ Rn.

DEFINITION 165. Let T ∈ End(V ). The adjoint of T is the map T ∗ such that

〈T ∗u,v〉= 〈u,T v〉
LEMMA 166. The adjoint exists and is unique. We have (cS+T )∗ = c∗S∗+ T ∗ where c∗ is the

complex conjugate.

PROOF. Observe that for each u, the map

v 7→ 〈u,T v〉
is a linear functional. By the Reisz representation theorem there is a unique vector T ∗u such that this
functional equals ϕT ∗u, in other words such that we have

〈u,T v〉= 〈T ∗u,v〉
for all v. We need to check that T ∗ is a linear map. For this we use the uniqueness. Given two vectors
u,u′ we get two vectors T ∗u,T ∗u′ such that for all v we have

〈u,T v〉= 〈T ∗u,v〉〈
u′,T v

〉
=
〈
T ∗u′,v

〉
.

We then get for all v that:〈
T ∗(cu+u′),v

〉
=
〈
cu+u′,T v

〉
def of T ∗

= c∗ 〈u,T v〉+
〈
u′,T v

〉
inner pdt

= c∗ 〈T ∗u,v〉+
〈
T ∗u′,v

〉
def of T ∗

=
〈
cT ∗u+T ∗u′,v

〉
inner pdt

and it follows that T ∗(cu+u′) = cT ∗u+T ∗u′. �

EXAMPLE 167. When V =Rn equipped with the standard inner product the adjoint of a matrix is the
transpose.

EXERCISE 168. (PS12) Show that when V = Cn equipped with its standard Hermitian product, the
adjoint of a matrix is the conjugate transpose T † (“T dagger”, written T^\dagger in LATEX), given by

T †
i j = Tji .

EXERCISE 169. Let C∞
c (R) be the space of functions f : R→ C which are infinitely differentiable

and compactly supported in that there is an M such that f (x) = 0 if |x|> M (i.e. the non-zero part of the
graph of f happens over a finite interval). Equip C∞

c (R) with the inner product 〈 f ,g〉=
∫+∞

−∞
f̄ gdx.

Interpret the formula for integration by parts to show that the operator D = i d
dx acting on C∞

c (R) is
self-adjoint, in that D† = D (note the factor of i!).

5.5. The spectral theorem

We can finally discuss the notion of “an operator respecting an inner product”.

DEFINITION 170. We call a linear map self-adjoint if T † = T .

EXAMPLE 171. A matrix A ∈ Mn(R) is called symmetric if AT = A; a matrix A ∈ Mn(C) is called
Hermitian if A† = A.

Fix an inner product space V and a self-adjoint linear map T ∈ End(V ).
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5.5.1. Eigenvalues and eigenvectors of self-adjoint operators.

LEMMA 172. Suppose T v = λv and that v is non-zero. Then λ is a real number.

PROOF. We evaluate the inner product 〈v,T v〉 in two different ways. On the one hand

〈v,T v〉= 〈v,λv〉= λ 〈v,v〉

and on the other hand

〈v,T v〉=
〈

T †v,v
〉

def of adjoint

= 〈T v,v〉 self-adjointness

= 〈λv,v〉

= λ 〈v,v〉 .

Since 〈v,v〉 6= 0 we must have λ = λ̄ so λ ∈ R. �

LEMMA 173. Suppose T v = λv and T w = µw and that λ 6= µ . Then v⊥ w.

PROOF. We evaluate 〈v,T w〉 in two ways: We have:

〈v,T w〉= 〈v,µw〉= µ 〈v,w〉

and also
〈v,T w〉= 〈T v,w〉= 〈λv,w〉= λ 〈v,w〉

since λ is real. Subtracting the two expressions we get:

(µ−λ )〈v,w〉= µ 〈v,w〉−λ 〈v,w〉= 0

and since µ−λ 6= 0 we must have 〈v,w〉= 0. �

5.5.2. The Spectral Theorem. Recall that we have fixed a a finite-dimensional inner product space
V and a self-adjoint map T ∈ End(V ).

LEMMA 174. T has at least one eigenvalue.

PROOF. We have seen that every linear map has a complex eigenvalue. �

PROOF. Consider the continuous function f (v) = 〈v,T v〉 on the sphere {v | ‖v‖= 1}. This is a
differentiable function so from calculus it has a maximum. We have ∇ f (v) = (T + T †)v = 2T v and
∇‖v‖2 = 2v. By the theory of Lagrange multiplies there is λ ∈ R such that at the maximum point v we
have

∇ f (v) = λ∇

(
‖v‖2−1

)
or in other words

2T v = 2λv .

�

PROOF. Consider the continuous function f (v) = 〈v,T v〉 on the sphere {v | ‖v‖= 1}. It attains its
maximum at some point v. Now let w ∈ v⊥ be a non-zero unit vector. Then for each real number c we
have ‖v+ cw‖2 = 1+ |c|2 by Pythagoras. Thus v+cw√

1+c2 has norm 1, and we set

g(c) = f

(
v+ cw√
1+ |c2|

)
,
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which attains a local maximum at c = 0. We have

f

(
v+ cw√
1+ |c2|

)
=

〈
v+ cw√
1+ |c2|

,T
v+ cw√
1+ |c2|

〉

=
1

1+ |c|2
[
〈v,T v〉+ c〈v,T w〉+ c〈w,T v〉+ c2 〈w,T w〉

]
.

Differentating at c = 0 we get
dg
gc

(0) = 〈v,T w〉+ 〈w,T v〉

= 〈T v,w〉+ 〈w,T v〉
= 2ℜ〈w,T v〉 .

It thus follows that ℜ〈w,T v〉 = 0. Replaing w with iw (which still has 〈iw,v〉 = 0 we conclude that
ℑ〈w,T v〉= 0 so 〈w,T v〉= 0. Since w ∈ v⊥ was arbitrary we conclude that T v ∈

(
v⊥
)⊥

= Span{v} and
hence that T v = λv for some λ ∈ C. �

LEMMA 175. Let W ⊂ V be a T -invariant subspace (in that T (W ) ⊂W). Then W⊥ is also T -
invariant.

PROOF. Let v ∈W⊥. Then for all w ∈W we have 〈w,T v〉= 〈T w,v〉= 0 since T w ∈W and v ∈W⊥.
It follows that T v ∈W⊥ as well. �

THEOREM 176. Let V be a finite-dimensional inner product space, and let T ∈ End(V ) be self-
adjoint. Then T is diagonable with real eigenvalues. In fact, there is an orthonormal basis of V consisting
of eigenvectors of T .

PROOF. Let B ⊂ V be an orthonormal system consisting of eigenvectors of T which is as large as
possible (this exists since #B ≤ dimV = n). An d let W = SpanB. Suppose B is not complete, so that
B⊥ =W⊥ is non-zero. By Lemma 175, T �W⊥∈ End(W⊥). This is a self-adjoint map with respect to the
restricted inner product, so by Lemma 174 it has at least one eigenvector v, which we may take to have
norm 1. But then v ∈W⊥ = B⊥ is orthogonal to B, so B∪{v} is a larger orthonormal system consisting
of eigenvectors of T , a contradition. �

5.5.3. Orthogonal and unitary maps.
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