
Lior Silberman’s Math 535, Problem Set 5: Compact Lie Groups

The classical groups

1. Find a maximal torus and the Weyl group of SU(n), SO(2n), SO(2n+1).

2. (More on covering groups)
(a) Show that U(n)' (SU(n)×U(1))/µn where µn ⊂U(1) is the group of nth roots of unity.
(b) Show that U(n) is not isomorphic to SU(n)×U(1) (this is less obvious than it seems).

3. (Symplectic groups over fields)
DEF Let F be a field, charF 6= 2, V a finite-dimensional F-vector space. A symplectic form

on V is a non-degenerate anti-symmetric bilinear form 〈·, ·〉 on V .
(a) (Darboux’s Theorem) Show that there is a basis {ei}n

i=1 ∪ { fi}n
i=1 such that

〈
ei,e j

〉
=〈

fi, f j
〉
= 0 and such that

〈
ei, f j

〉
= δi j. In particular, dimF V is even.

(b) The symplectic group is the associated symmetry group

Sp〈·,·〉(F) = {g ∈ GL(V ) | ∀u,v ∈V : 〈gu,gv〉= 〈u,v〉} .
Show that up to conjugacy this group does not depend on the choice of symplectic form.

(c) Given u ∈V and a ∈ F , a symplectic transvection is the map Uu,a(v) = v+a〈v,u〉u. Show
that Uu,a ∈ Sp〈·,·〉(F).

(d) Show that the representation of the symplectic group of V on V is irreducible.
DEF Write Sp2n(F) for the symplectic group with respect to the standard form: Sp2n(F) ={

g ∈ GL2n(F) | gT Xg = X
}

where X =

(
0 In
−In 0

)
(In is the n×n identity matrix).

4. (The compact symplectic group) This is the group Sp(n) def
= Sp2n(C)∩U(2n). Equivalently, we

endow a complex symplectic vector space with the Hermitian product for which the symplectic
basis of 3(a) is orthonormal.
(a) Find a maximal torus of Sp(n), and its associated Weyl group.
(b) Show that the normalizer of the torus acts irreducibly on C2n.
(c) Show that Sp(n) is a maximal compact subgroup of Sp2n(C).

Roots and root spaces

5. Let α,β ∈Φ(G : T ) be non-proportional roots, let I = {k ∈ Z | β + kα ∈Φ}, and let a=min I,
b = max I. Show that:
(a) I = [a,b]∩Z.
DEF Call {β + kα}k∈I a “root string”, specifically the α-string through β .
(b) ⊕k∈Igβ+kα is invariant by adXα ,adX−α ,adHα , hence by sα .
(c) sα acts on the root string by reversing the order; in particular sα(β +aα) = β +bα .
(d) a+b =−nαβ and the string contains at most 4 elements.
Hint: apply Corollary 153.

45



6. Let g be a Lie algebra over an arbitrary field. For X ,Y ∈ g set 〈X ,Y 〉 def
= Tr(adX adY ) and call

this the Killing form of g.
(a) Show that the Killing form is bilinear and symmetric.
(b) Show that it is ad-invariant: 〈adZ X ,Y 〉+ 〈X ,adZ Y 〉.
(c) Show that the radical of the Killing form is an ideal of g containing the centre.
(d) Suppose g is the Lie algebra of a real Lie group G. Show that the Killing form is Ad-

invariant:
〈
Adg X ,Y

〉
=
〈
X ,AdgY

〉
.

(e) Suppose further G is a compact Lie group. Show that the Killing form is negative semi-
definite and that its radical is the center.

(f) Conversely, suppose the Killing form of a Lie group G is negative definite. Show that the
centre of G is discrete, and that G is compact as long as its centre is finite.

From hyperplane arrangements to Weyl chambers

Let E be a finite-dimensional affine vector over R. A hyperplane in E is an affine subspace
H ⊂ E of codimension 1. The complement E \H has two connected components, the half-planes
bounded by H. Both are covex sets.

A hyperplane arrangement is a setH of hyperplanes. CallH locally finite if every x ∈ E has a
neighbourhood intersecting only finitely many H ∈H.
7. (Facets) Fix a locally finite hyperplane arrangementH in E.

(a) Define a relation on E by x∼ y if for every H ∈H either both x,y∈H or the closed interval
[x,y] is disjoint from H (that is, if both x,y are on the same side of H). Show that ∼ is an
equivalence relation.

DEF Equivalence classes are called facets; for x ∈ E write F(x) for the facet containing it.
(b) Show that the facets are convex.
(c) Show that for every x ∈ E has an open neighbourhood U such that every hyperplane inter-

secting U passes through x.
(d) Show that F(x) is open in

⋂
{H ∈H | x ∈ H}. Conclude that this affine subspace is the

affine hull of F(x) and that F(x) is open in its closure.
DEF For a facet F write dimF for the dimension of its affine hull.
(e) Show that the complement of all the hyperplanes is an open dense subset of E, and that its

connected components are exactly the facets of dimension dimE.
DEF Call these facets of maximal dimension chambers.
(f) For any facet F show that ∂F is a union of facets of strictly smaller dimension.

8. (Walls) Partially order the facets by setting F ≥ F ′ if F ′ ⊂ F̄ .
(a) Suppose F ≥ F ′ and let H be a hyperplane not containing F ′. Show that both F,F ′ are on

the same side of H.
(b) Suppose F ≥ F ′ and that dimF ≥ dimF ′+ 2. Show that there is a facet F ′′ such that

F ≥ F ′′ ≥ F ′ and dimF ′′ = dimF + 1. (hint: consider the hyperplanes containing F ′ but
not F and remove them one-by-one).

DEF Call H ∈Ha wall of the chamber C if some codimension-1 facet of C is open in H.
(c) Show that ∂C is covered by the sets H ∩C̄ where H is a wall of C.
(d) Show that every H ∈ H is the wall of some chamber (hint: find x ∈ H which does not lie

in any other hyperplane and choose C such that x ∈ C̄).
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9. (Reflection groups) Suppose now that E is a Euclidean space (that is, it is equipped with a
Euclidean norm), and for each H ∈ H let sH ∈ Isom(E) be the orthogonal reflection in H.
Suppose that H is sH-invariant for each H ∈ H (that is, if H,H ′ ∈ H then sH(H ′) ∈ H as
well).
(a) When dimE = 2, let `1, `2 ⊂ E be two distinct intersecting lines and let si be the reflection

in `i. Show that s1s2 is a rotation by 2θ about the intersection point where 0 < θ ≤ π

2 is
the angle between `1, `2.

(b) Using the assumption thatH is locally finite show that s1s2 has finite order and hence that
θ is a rational multiple of π for some m≥ 2. Show that s1,s2 commute iff m= 2 iff `1⊥ `2.

(c) Suppose that `1, `2 are both walls of the same chamber. Show that θ = π

m for some m≥ 2
and that the order of s1s2 is exactly m.

(d) Now let dimE ≥ 2 be arbitrary and let H1,H2 ∈ H be distinct non-parallel hyperplanes
and let si be the associated reflections. Applying the ideas of (b),(c),(d) in the orthogonal
complement to H1 ∩H2 show that s1s2 has finite order, that the angle between H1,H2 is
rational, and that if H1,H2 are walls of the same chamber then the angle between them is
θ

m for some m≥ 2.
(e) Let H1,H2 be distinct parallel hyperplanes. Show that sH1sH2 is a translation in the direc-

tion perpendicular to them, and in particular that it has infinite order.

10. (Weyl groups and coxeter groups) Continuing with the hypothesis of the previous problem, let
W ⊂ Isom(E) be the subgroup generated by the reflections {sH}H∈H and let W ′ ⊂W be the
subgroup generated by the reflection in the wall of a fixed chamber C.
(a) Show that W ′ acts transitively on the set of chambers
(b) Show that W ′ =W .
DEF Let {Hi}i∈I be the walls of C, and let si ∈W be the reflection by Hi. For i 6= j let the

angle between Hi,H j be π

mi j
(so that mi j = ∞ if Hi,H j are parallel). If i = j set mi j = 1.

The matrix M is called the Coxeter matrix of W .
DEF A Coxeter matrix (of rank n) is an n×n matrix M such that mii = 1 and so that for i 6= j

we have mi j = m ji ∈ Z≥2∪{∞}.
(c) The Coxeter group associated to a Coxeter matrix M is the group W (M) generated by

S = {si}n
i=1 subject to the relations

(
sis j
)mi j = 1 for all i, j. Show that W is a quotient of

W (M).
RMK In fact, W =W (M).

REMARK. Finite Coxeter groups can be classified.

47


