Lior Silberman's Math 322: Problem Set 10 (due 28/11/2017)

P1. Find a group G and three pairwise disjoint subgroups A, B, C such that the multiplication map $A \times B \times C \to G$ is not injective.

DEFINITION. Let G be a group. Call $g \in G$ a torsion element if g has finite order ($g^k = e$ for some $k \neq 0$), and write G_{tors} for the set of torsion elements. Say that g is p-power torsion if its order is a power of p. For an abelian group write A[n] for the set of elements of order dividing n and $A[p^{\infty}]$ for the set p-power torsion elements.

- P2. (Torsion) Let G, H be groups, A an abelian group.
 - (a) If G is finite then $G = G_{tors}$. Give an example of an infinite group consisting entirely of torsion elements.
 - (b) Show that $f(G_{tors}) \subset H_{tors}$ for any $f \in Hom(G, H)$.
 - (c) $A_{\text{tors}} = \bigcup_{n \ge 1} A[n], A[p^{\infty}] = \bigcup_{r=0}^{\infty} A[p^r].$
 - (d) Let $X \in G\overline{L}_n(\mathbb{R})$ be a torsion element. Show that the eigenvalues of X are (possibly complex) roots of unity.
 - (e) Find $X, Y \in GL_n(\mathbb{R})_{tors}$ such that XY has infinite order.

Abelian groups

- 1. (First do problem P2) Fix an abelian group *A*.
 - (a) Show that A_{tors} and $A[p^{\infty}]$ are subgroups of A.
 - (b) Show that $A[p^{\infty}]$ is the *p*-Sylow subgroup of *A*.
 - It follows that, if A is finite, $A = \prod_{p} A[p^{\infty}]$ as an internal direct product.
 - (c) Show that A/A_{tors} is torsion-free: $(A/A_{\text{tors}})_{\text{tors}} = \{e\}$.
- 2. Find the isomorphism classes of the Sylow subgroups of $C_{360} \times C_{300} \times C_{200} \times C_{150}$.

Nilpotent groups and torsion

- 3. Let G be two-step nilpotent, in that G/Z(G) is abelian.
 - PRAC Verify that the Heisenberg group (PS7 problem P2) is two-step nilpotent.
 - (a) For $x, y \in G$ let $[x, y] = xyx^{-1}y^{-1}$ be their commutator. Show that $[x, y] \in Z(G)$ for all G (hint: this is purely formal).
 - (b) Let $x, y \in G$ and $z, z' \in Z(G)$. Show that [x, y] = [xz, yz'] and conclude that the commutator induces a map $G/Z \times G/Z \to Z$.
 - (c) Show that this map is *anti-symmetric*: $[\bar{y}, \bar{x}] = [\bar{x}, \bar{y}]^{-1}$ and *biadditive*: $[\bar{x}\bar{x}', \bar{y}] = [\bar{x}, \bar{y}][\bar{x}', \bar{y}]$, $[\bar{x}, \bar{y}\bar{y}'] = [\bar{x}, \bar{y}][\bar{x}, \bar{y}']$.
 - RMK In fact, a two-step nilpotent group is more-or-less determined by the abelian groups A = G/Z(G), Z = Z(G) and the anti-symmetric biadditive form $[\cdot, \cdot]: A \times A \to Z$.
- 4. (Torsion in nilpotent groups) Continue with the hypotheses of problem 3.
 - (a) Let $x, y \in G$ and suppose that $x \in G_{tors}$. Show that $[x, y] \in Z(G)_{tors}$.
 - (**b) (The hard part). Show that G_{tors} is a subgroup of G.

Extra credit

In general, a group is 0-step nilpotent if it is trivial, (d+1)-step nilpotent if G/Z(G) is d-step nilpotent, and *nilpotent* if it is d-step nilpotent for some d. A variant on the argument of problem 4 shows that the set of torsion elements of any nilpotent group is a subgroup.

- 5^{**} . Let *G* be a finite nilpotent group.
 - (a) Show that the Sylow subgroups of G are normal.
 - (b) Show that a finite group is nilpotent iff it is the direct product of its Sylow subgroups.