
SOLUTIONS TO PROBLEM SET 1

Section 1.3

Exercise 4. We see that
1

1 ⋅ 2
=
1

2
,

1

1 ⋅ 2
+

1

2 ⋅ 3
=
2

3
,

1

1 ⋅ 2
+

1

2 ⋅ 3
+

1

3 ⋅ 4
=
3

4
,

and is reasonable to conjecture
n

∑
k=1

1

k(k + 1)
=

n

n + 1
.

We will prove this formula by induction.

Base n = 1: It is shown above.

Hypothesis: Suppose the formula holds for n.

Step:
n+1
∑
k=1

1

k(k + 1)
=

n

∑
k=1

1

k(k + 1)
+

1

(n + 1)(n + 2)

=
n

n + 1
+

1

(n + 1)(n + 2)

=
n(n + 2) + 1

(n + 1)(n + 2)
=

n2 + 2n + 1

(n + 1)(n + 2)

=
(n + 1)2

(n + 1)(n + 2)
=
n + 1

n + 2
,

where in the second equality we used the induction hypothesis.

Exercise 14. We will use strong induction.

Base 54 ≤ n ≤ 60: We have

54 = 7 ⋅ 2 + 10 ⋅ 4, 55 = 7 ⋅ 5 + 10 ⋅ 2, 56 = 7 ⋅ 8 + 10 ⋅ 0, 57 = 7 ⋅ 1 + 10 ⋅ 5

and
58 = 7 ⋅ 4 + 10 ⋅ 3, 59 = 7 ⋅ 7 + 10 ⋅ 1, 60 = 7 ⋅ 0 + 10 ⋅ 6.

Hypothesis: Suppose the result holds for 54 ≤ k ≤ n.

Step n ≥ 60 ∶ We have n − 6 ≥ 54, hence by the induction hypothesis we can write

n − 6 = 7a + 10b for some a, b ∈ Z>0.

Then n + 1 = 7(a + 1) + 10b, as desired.
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Exercise 22. We will use induction.

Base n = 0: We have 1 + 0h = 1 = (1 + h)0, as desired.

Hypothesis: Suppose the result holds for n.

Step n ≥ 0 ∶ We have

(1 + h)n+1 = (1 + h)n(1 + h)

≥ (1 + nh)(1 + h)

= 1 + h + nh + nh2

≥ 1 + (n + 1)h,

where in the first inequality we used the induction hypothesis and 1 + h ≥ 0.

Exercise 24. The proof fails in the statement that the sets {1, . . . , n} and {2, . . . , n + 1}
have common members. This is false when n = 1; indeed, the sets are {1} and {2} which are
clearly disjoint.

Section 1.5

Exercise 26. Let a, b ∈ Z>0.

We first prove existence. The division algorithm gives q′, r′ ∈ Z such that

a = bq′ + r′ with 0 ≤ r′ < b.

We now divide into two cases:

(i) Suppose r′ ≤ b/2; then −b/2 < r′ ≤ b/2. The result follows by taking q = q′ and r = r′.
(ii) Suppose b/2 < r′ < b; then −b/2 < r′ − b < 0. We have

a = bq′ + r′ = bq′ + b + r′ − b = b(q′ + 1) + (r′ − b),

Write q = q′ + 1 and r = r′ − b. Then

a = bq + r, with − b/2 < r < 0 ≤ b/2.

as desired.

We now prove uniqueness. Suppose

a = bq1 + r1 = bq2 + r2, with − b/2 < r1, r2 ≤ b/2.

Then b(q1 − q2) = (r2 − r1) and b divides r2 − r1. Since −b < r2 − r1 < b it follows that
r2 − r1 = 0 because there is no other multiple of b in this interval. We conclude that r1 = r2
and b(q1 − q2) = 0; thus we also have q1 = q2, as desired.

Exercise 36. Let a ∈ Z. Dividing a by 3 we get a = 3q + r with r = 0,1,2. Note that

a3 − a = (a − 1)a(a + 1) = (3q + r − 1)(3q + r)(3q + r + 1)

and clearly for any choice of r = 0,1,2 one of the three factors is a multiple of 3. This is the
same as saying that in among three consecutive integers one must be a multiple of 3.
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Section 2.1

Exercise 12. Let a ∈ Z>0.

We first prove existence. We will use strong induction.

Base a ≤ 2. If a = 1 take k = 0 and e0 = 1; if a = 2 take k = 1, e1 = 1 and e0 = −1.

Hypothesis: Suppose the desired expression exists for all positive integers < a.

Step a ≥ 3. From the modified division algorithm (Problem 26 in Section 1.5) there exist
q, e0 ∈ Z such that

a = 3q + r, with − 3/2 < r ≤ 3/2;

in particular, r = −1,0,1. We have 0 < q = (a − r)/3 < a and by hypothesis we can write

q = as3
s + . . . + a13 + a0, as ≠ 0, ai ∈ {−1,0,1}.

Thus we have

a = 3q + r = 3(as3
s + . . . + a13 + a0) + r = as3

s+1 + . . . + a132 + a03 + r

and we take k = s + 1, e0 = r and ei = as−1 for i = 1, .., k.

We now prove uniqueness. We will use strong induction. Suppose

a = ek3
k + . . . + e13 + e0 = cs3

s + . . . + c13 + c0, ek, as ≠ 0, ei, ai ∈ {−1,0,1}.

Base a ≤ 2: We know from above that if a = 1 can we take k = 0 and e0 = 1 and if a = 2 we
can take k = 1, e1 = 1 and e0 = −1, as balanced ternary expansions. Note also that 0 cannot
be written as an expansion using non-zero coefficients.

Suppose now a = 1 = ek3k + . . . + e13 + e0 with k ≥ 1; then a divided by 3 has reminder e0 = 1
by the division algorithm. We conclude that ek3k + . . . + e13 = 0 which is impossible, unless
ei = 0 for all i ≥ 1.

Suppose a = 2 = 1 ⋅ 3 − 1 = ek3k + . . . + e13 + e0 with k ≥ 1; then a divided by 3 has reminder
e0 = −1 by the modified division algorithm. We conclude that ek3k + . . . + e13 = 3. Dividing
both sides by 3 we conclude that ek3k−1 + . . . + e1 = 1 which gives k = 1 and e1 = 1 by the
previous paragraph. This shows that a = 1,2 have an unique balanced ternary expansion.

Hypothesis: Suppose the expansion is unique for all positive integers < a.

Step a ≥ 3: By the uniqueness of the modified division algorithm (Problem 26, Section 1.5),
dividing a by 3 we conclude e0 = c0. Now

a − e0
3

= ek3
k−1 + . . . + e1 = cs3

s−1 + . . . + c1

and by induction hypothesis we have k = s and ei = ci for i = 1, .., k.

Finally, suppose a < 0; we apply the result to −a > 0 and (due to the symmetry of the
coefficients) we obtain the expansion for a by multiplying by −1 the expansion for −a.

Exercise 13. Let w be the weight to be measured. From the previous exercise we can write

w = ek3
k + . . . + e13 + e0, ek ≠ 0, ei ∈ {−1,0,1}.

Place the object in pan 1. If ei = 1, then place a weight of 3i into pan 2; if ei = −1, then place
a weight of 3i into pan 1; if ei = 0 do nothing; in the end the pans are balanced.
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Exercise 17. Let n ∈ Z>0 be given in base b by

n = akb
k + . . . + a1b + a0, ak ≠ 0, 0 ≤ ai < b.

Let m ∈ Z>0. We want to find the base b expansion of bmn, that is

bmn = csb
s + . . . + c1b + c0, cs ≠ 0, 0 ≤ ci < b.

Multiplying both sides of the first equation by bm gives

bmn = akb
k+m + . . . + a1bm+1 + a0bm, ak ≠ 0, 0 ≤ ai < b.

We know that the expansion in base b is unique, so by comparing the last two equations we
conclude that

s = k +m, cs−i = ak−i for i = 0, . . . , k and ci = 0 for i = 0, . . . ,m − 1,

which means
bmn = (cscs−1 . . . c0)b = (akak−1 . . . a1a000 . . .0)b,

where we have m zeros in the end.

Section 3.1

Exercise 6. Let n ∈ Z. Note the factorization n3 + 1 = (n + 1)(n2 − n + 1) into two integers.
If n3 + 1 is a prime, then n ≥ 1 and n+ 1 is either 1 or prime. Since n+ 1 ≠ 1 we have n+ 1 is
prime and hence n2 − n + 1 must be 1, which implies n = 0,1. We conclude n = 1, as desired.

Exercise 8. Let n ∈ Z>0. Consider Qn = n! + 1. There is a prime factor p ∣ Qn. Suppose
p ≤ n; then p ∣ n! = n(n−1)(n−2)⋯2 ⋅1 therefore p ∣ Qn−n! = 1, a contradiction. We conclude
that p > n. In particular, given a positive integer n we can always find a prime larger than
n; by growing n we produce infinitely many arbitrarily large primes.

Exercise 9. Note that if n ≤ 2, then Sn ≤ 1. Therefore, we must assume that n ≥ 3 so
that Sn > 1. It follows then that Sn has a prime divisor p. If p ≤ n, then p ∣ n!, and so
p ∣ (n! − Sn) = 1, a contradiction. Thus p > n. Because we can find arbitrarily large primes,
there must be infinitely many.

Section 3.3

Exercise 6. Let a ∈ Z>0 and write d = (a, a + 2). In particular, d divides both a and a + 2,
hence d also divides the difference (a + 2) − a = 2. We conclude d = 1 or d = 2. Now, if a is
odd then a + 2 is also odd, hence d = 1; if a is even then 2 divides both a and a + 2, so d = 2.
We conclude that (a, a + 2) = 1 if and only if a is odd and (a, a + 2) = 2 if and only if a is
even.

Exercise 10. Write d = (a+b, a−b). If d = 1 there is nothing to prove. Suppose d ≠ 1 and let
p be a prime divisor of d (which exists because d ≠ 1). In particular, p is a common divisor
of a+ b and a− b, therefore it divides both their sum and difference; more precisely, p divides

(a + b) + (a − b) = 2a and (a + b) − (a − b) = 2b.

Furthermore, since p is prime we also have

(i) p ∣ 2a implies p = 2 or p ∣ a,
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(ii) p ∣ 2b implies p = 2 or p ∣ b.

Suppose p ≠ 2. Then in (i) we have p ∣ a and in (ii) we have p ∣ b; this is a contradiction with
(a, b) = 1. We conclude that p = 2.

So far we have shown that the unique prime factor of d is 2, therefore d = 2k with k ≥ 1. To
finish the proof we need to prove that k = 1. Since d ∣ a + b and d ∣ a − b arguing as above we
conclude that 2k ∣ 2a and 2k ∣ 2b, that is

2a = 2kx and 2b = 2ky for some x, y ∈ Z.

Suppose k ≥ 2. Then dividing both equations by 2 we get

a = 2k−1x and b = 2k−1y

with k−1 ≥ 1. In particular 2 ∣ a and 2 ∣ b, a contradiction with (a, b) = 1, showing that k = 1,
as desired.

Here is an alternative, shorter proof using one of the main theorms on gcd:

Let a, b ∈ Z satisfy (a, b) = 1. There exist x, y ∈ Z such that ax + by = 1. Then

(a + b)(x + y) + (a − b)(x − y) = 2ax + 2by = 2(ax + by) = 2

and since (a+b, a−b) is the smallest positive integer that can be written as an integral linear
combination of a + b and a − b we must have (a + b, a − b) ≤ 2. Thus (a + b, a − b) = 1,2 as
desired.

Exercise 12. Let a, b ∈ Z be even and not both zero. There exist x, y ∈ Z such that

ax + by = (a, b) ⇔
a

2
x +

b

2
y =
(a, b)

2
.

Since (a/2, b/2) is the smallest positive integer that can be written as an integral linear
combination of a/2 and b/2 we must have (a/2, b/2) ≤ (a, b)/2.

To finish the proof we will show that (a/2, b/2) ≥ (a, b)/2. There exist x, y ∈ Z such that

a

2
x +

b

2
y = (a/2, b/2) ⇔ ax + by = 2(a/2, b/2).

Since (a, b) is the smallest positive integer that can be written as an integral linear combi-
nation of a and b we conclude (a/2, b/2) ≥ (a, b)/2, as desired.

Exercise 24. Let k ∈ Z>0. Suppose d is a common divisor of 3k + 2 and 5k + 3. Then d
divides every integral linear combination of these numbers. In particular, d divides

5(3k + 2) − 3(5k + 3) = 15k + 10 − 15k − 9 = 1,

hence (3k + 2,5k + 3) = 1, as desired.
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Section 3.4

Exercise 2. We will use the Euclidean algorithm.

a) Compute (51,87).

87 = 51 ⋅ 1 + 36, 51 = 36 ⋅ 1 + 15, 36 = 15 ⋅ 2 + 6, 15 = 6 ⋅ 2 + 3, 6 = 3 ⋅ 2 + 0,

thus (51,87) = 3.

b) Compute (105,300).

300 = 105 ⋅ 2 + 90, 105 = 90 ⋅ 1 + 15, 90 = 15 ⋅ 6 + 0,

thus (105,300) = 15.

c) Compute (981,1234).

1234 = 981 ⋅ 1 + 253, 981 = 253 ⋅ 3 + 222, 253 = 222 ⋅ 1 + 31

and
222 = 31 ⋅ 7 + 5, 31 = 5 ⋅ 6 + 1, 5 = 1 ⋅ 5 + 0,

thus (981,1234) = 1.

Exercise 6.

a) Compute (15,35,90).

Note that 90 = 15 ⋅ 6 then ((15,90),35) = (15,35) = 5.

b) Compute (300,2160,5040).

Note that 1260 = 300 ⋅ 7 + 60 and 300 = 60 ⋅ 5 thus (300,2160) = 60.

Since 5040 = 60 ⋅ 84 we also have

(300,2160,5040) = ((300,2160),5040) = (60,5040) = 60.

Section 3.5

Exercise 10. Let a, b ∈ Z>0. Suppose a3 ∣ b2.

Write a = pa11 pa22 . . . pakk for the prime factorization of a. Write pbii for the largest power of pi
diving b. In particular, we can write b = pbii ⋅m for some m ∈ Z, with pi ∤m.

From a3 ∣ b2 it follows that p3aii ∣ p
2bi
i m2 and since pi ∤m we must have p3aii ∣ p

2bi
i . This implies

2bi − 3ai ≥ 0, hence bi/ai ≥ 3/2 > 1. Thus bi > ai for all i. Hence we can write

b = pa11 pb1−a11 ⋅ pa22 pb2−a22 ⋅ . . . ⋅ pakk pbk−akk ⋅m′

for some m′ ∈ Z (note that m′ is needed since b may have prime factors which are none of
the pi). Therefore, by reordering the factors we also have

b = (pa11 pa22 . . . pakk )(p
b1−a1
1 pb2−a22 ⋅ . . . ⋅ pbk−akk ) ⋅m′ = a(pb1−a11 pb2−a22 ⋅ . . . ⋅ pbk−akk ) ⋅m′.

Thus a ∣ b, as desired.
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Exercise 30. We will use the formulas for (a, b) and LCM(a, b) in terms of the prime
factorizations of a and b.

a) a = 2 ⋅ 32 ⋅ 53, b = 22 ⋅ 33 ⋅ 72. Thus

(a, b) = 2 ⋅ 32, LCM(a, b) = 22 ⋅ 33 ⋅ 53 ⋅ 72.

b) a = 2 ⋅ 3 ⋅ 5 ⋅ 7, b = 7 ⋅ 11 ⋅ 13. Thus

(a, b) = 7, LCM(a, b) = 2 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 11 ⋅ 13.

c) a = 28 ⋅ 36 ⋅ 54 ⋅ 1113, b = 2 ⋅ 3 ⋅ 5 ⋅ 11 ⋅ 13. Thus

(a, b) = 2 ⋅ 3 ⋅ 5 ⋅ 11, LCM(a, b) = 28 ⋅ 36 ⋅ 54 ⋅ 1113 ⋅ 13.

d) a = 41101 ⋅ 4743 ⋅ 1031001, b = 4111 ⋅ 4347 ⋅ 83111. Thus

(a, b) = 4111, LCM(a, b) = 41101 ⋅ 4347 ⋅ 4743 ⋅ 83111 ⋅ 1031001.

Exercise 34. Let a, b ∈ Z>0. Suppose that

(a, b) = 18 = 2 ⋅ 32 and LCM(a, b) = 540 = 22 ⋅ 33 ⋅ 5.

Since (a, b) ⋅ LCM(a, b) = ab we conclude that the possible prime factors of a, b are 2, 3 and
5. Write

a = 2d23d35d5 , b = 2e23e35e5 , di, ei ≥ 0

for the prime factorizations of a and b. We also know that

(a, b) = 2min(d2,e2) ⋅ 3min(d3,e3) ⋅ 5min(d5,e5)

and
LCM(a, b) = 2max(d2,e2) ⋅ 3max(d3,e3) ⋅ 5max(d5,e5).

Therefore,
min(d2, e2) = 1 max(d2, e2) = 2.

After interchanging a, b if necessary we can suppose d2 = 1 and e2 = 2. Similarly, we also
have

min(d3, e3) = 2, max(d3, e3) = 3, min(d5, e5) = 0, max(d5, e5) = 1.

Thus (d3, e3) = (2,3) or (3,2) and (d5, e5) = (1,0) or (1,0), giving the following four possi-
bilities for a, b:

(1) a = 21 ⋅ 32 = 18 and b = 22 ⋅ 33 ⋅ 51 = 540,
(2) a = 21 ⋅ 32 ⋅ 51 = 90 and b = 22 ⋅ 33 = 108,
(3) a = 21 ⋅ 33 = 54 and b = 22 ⋅ 32 ⋅ 51 = 180,
(4) a = 21 ⋅ 33 ⋅ 51 = 270 and b = 22 ⋅ 32 = 36,

Since (a, b) and LCM(a, b) do not depend on the signs and order of a, b we obtain all the so-
lutions by multiplying a or b or both by −1 and interchanging them: (±18,±540),(±540,±18),
(±90,±108), (±108,±90), (±54,±180), (±180,±54), (±270,±36),(±36,±270).

The following argument, avoiding the formula (a, b) ⋅LCM(a, b) = ab, is an alternative to the
first part of the proof above. Write

a = pe11 . . . pekk , b = pd11 . . . pdkk , ei, di ≥ 0
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(note that we have to allow the exponents to be zero so that we can use the same primes pi
in both factorizations). We have that

18 = 2 ⋅ 32 = (a, b) = p
min(e1,d1)
1 . . . p

min(ek,dk)
k ,

hence p1 = 2, min(e1, d1) = 1, p2 = 3, min(e2, d2) = 2 and min(ei, di) = 0 for all i satisfying
3 ≤ i ≤ k. We also have,

540 = 22335 = LCM(a, b) = p
max(e1,d1)
1 . . . p

max(ek,dk)
k ,

hence max(e1, d1) = 2, max(e2, d2) = 3, p3 = 5, max(e3, d3) = 1 and max(ei, di) = 0 for all i
satisfying 4 ≤ i ≤ k. Thus ei = di = 0 for all i satisfying 4 ≤ i ≤ k. Note this argument gives
at the same time that the prime factors of a and b are 2, 3 or 5 and information about the
possible exponents they may occur.

Exercise 42.

(a) Suppose 3
√
5 is rational. Then, 3

√
5 = a/b for some coprime positive integers a, b with

b ≠ 0. Then, we have
3
√
5 = a/b Ô⇒ 5b3 = a3 Ô⇒ 5 ∣ a

because 5 is a prime dividing the product a3 = aaa, so divides one of the factors. Therefore,
a = 5k for some k ∈ Z and, replacing above gives

5b3 = (5k)3 ⇐⇒ b3 = 52k3 Ô⇒ 5 ∣ b,

showing that both a, b are divisible by 5, a contradiction.

(b) Let f(x) = x3 − 5, which is a monic polynomial with integer coefficients. We have
f( 3
√
5) = 0 and since 3

√
5 is not an integer it must be irrational by Theorem 3.18 (in the

textbook).

Exercise 45. Suppose that logp b is rational. Then, logp b = r/q for some coprime r, q ∈ Z
with q ≠ 0. Then,

q logp b = r Ô⇒ (plogp b)q = pr ⇐⇒ bq = pr

and since b is not a power of p it must be divisble by some other prime q. Then q ∣ pr, a
contradiction since p is prime.

Exercise 56. We will work by contradiction.

Suppose there are only finitely many primes of the form 6k+5. Denote them p0 = 5, p1, . . . , pk
and consider the number

N = 6p0p1⋯pk − 1.

Cleary N > 1 because p0 = 5, so there exists a prime factor p dividing N . We apply the
division algorithm to divide p by 6 and obtain

p = 6q + r, r, q ∈ Z, 0 ≤ r ≤ 5.

We now divide into cases

(1) Suppose r = 0,2,4; then p is even, i.e p = 2. Since 2 ∤ N (it divides N + 1) this is
impossible; thus r ≠ 0,2,4.

(2) Suppose r = 3; then 3 ∣ p, i.e p = 3. Again, 3 ∤ N , a contradiction.
(3) Suppose r = 5; thus p is of the form 6k+5 and by hypothesis we have p = pi for some i.

Since pi ∣ N + 1 it does not divide N , again a contradiction.
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From these cases it follows that p is of the form 6k + 1. Since p is any prime factor of N , we
conclude that all the prime factors occrring in the prime factorization of N are of the form
6k + 1. In other words,

N = `a11 ⋅ . . . ⋅ `
as
s with `i = 6ki + 1 distinct primes and ai ≥ 1.

Note that (6k + 1)(6k′ + 1) = 6(6kk′ + k + k′) + 1, that is the product of any two integers of
the form 6k + 1 is also of this form. From the prime factorization above we conclude that N
is of the form 6k + 1. This is incompatible with N being also of the form 6k − 1 as defined
above. Thus our initial assumption is wrong, i.e. there are infinitely many primes of the
form 6k + 5, as desired.

If you are familiar with congruences the last part of the proof can be restaded
as follows. From the cases it follows that any prime q dividing N is of the form 6a + 1,
that is q ≡ 1 (mod 6). Since the product of two such primes q1, q2 (not necessatily distinct)
also satisfies q1q2 ≡ 1 (mod 6) we conclude that N ≡ 1 (mod 6) which is a contradiction with
N ≡ −1 ≡ 5 (mod 6).

Section 3.7

Exercise 2. We apply the theorem we learned in class to describe solutions of linear Dio-
phantine equations.

a) The equation 3x + 4y = 7. Since (3,4) = 1 ∣ 7 there are infinitely many solutions; note
that x0 = y0 = 1 is a particular solution. Then all the solutions are of the form

x = 1 + 4t, y = 1 − 3t, t ∈ Z.

b) The equation 12x + 18y = 50. Since (12,18) = 6 ∤ 50 there are no solutions.

c) The equation 30x + 47y = −11. Clearly (30,47) = 1 (47 is prime) so there are solu-
tions. We find a particular solution by applying the Euclidean algorithm followed by back
substitution. Indeed,

47 = 30 ⋅ 1 + 17, 30 = 17 ⋅ 1 + 13, 17 = 13 ⋅ 1 + 4

and
13 = 4 ⋅ 3 + 1, 4 = 1 ⋅ 4 + 0;

in particular, this double-checks that (30,47) = 1; we continue

1 = 13 − 4 ⋅ 3 = 13 − (17 − 13) ⋅ 3 = 13 ⋅ 4 − 17 ⋅ 3 = (30 − 17) ⋅ 4 − 17 ⋅ 3 =

= 30 ⋅ 4 − 17 ⋅ 7 = 30 ⋅ 4 − (47 − 30) ⋅ 7 = 30 ⋅ 11 − 47 ⋅ 7.

Thus x1 = 11, y1 = −7 is a particular solution to 30x + 47y = 1. Thus x0 = −11x1 = −121,
y0 = −11y1 = 77 is a particular solution to the desired equation. Therefore, the general
solution is given by

x = −121 + 47t, y = 77 − 30t, t ∈ Z.
d) The equation 25x+95y = 970. Since (25,95) = 5 ∣ 970 there are infinitely many solutions.
We divide both sides of the equation by 5 to obtain the equivalent equation

5x + 19y = 194.
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Note that (5,19) = 1 and x1 = 4, y1 = −1 is a particular solution to 5x + 19y = 1; then
x0 = 194x1 = 776, y0 = 194y1 = −194 is a particular solution to our equation. Thus the general
solution is given by

x = 776 + 19t, y = −194 − 5t, t ∈ Z.

e) The equation 102x+1001y = 1. We find (102,1001) by applying the Euclidean algorithm:
1001 = 102 ⋅ 9 + 83, 102 = 83 ⋅ 1 + 19, 83 = 19 ⋅ 4 + 7

and
19 = 7 ⋅ 2 + 5, 7 = 5 ⋅ 1 + 2, 5 = 2 ⋅ 2 + 1,

hence (102,1001) = 1 and the equation has infinitely many solutions. We apply back substi-
tution to find a particular solution:

1 = 5 − 2 ⋅ 2 = 5 − (7 − 5) ⋅ 2 = 7 ⋅ (−2) + 5 ⋅ 3 = 7 ⋅ (−2) + (19 − 7 ⋅ 2) ⋅ 3

= 19 ⋅ 3 − 7 ⋅ 8 = 19 ⋅ 3 − (83 − 19 ⋅ 4) ⋅ 8 = 83 ⋅ (−8) + 19 ⋅ 35

= 83 ⋅ (−8) + (102 − 83) ⋅ 35 = 102 ⋅ 35 − 83 ⋅ 43 = 102 ⋅ 35 − (1001 − 102 ⋅ 9) ⋅ 43

= 1001 ⋅ (−43) + 102 ⋅ 422.

Thus x0 = 422, y0 = −43 is a particular solution. Therefore, the general solution is given by
x = 422 + 1001t, y = −43 − 102t, t ∈ Z.

Exercise 6. This problem can be stated as finding a non-negative solution to the Diophan-
tine equation 63x+7 = 23y, where x is the number of plantains in a pile, and y is the number
of plantains each traveler receives.

Replace y by −y and rearrange the equation into 63x + 23y = −7 and note that (63,23) = 1,
hence there are infinitely many solutions. We apply Euclidean algorithm

63 = 23 ⋅ 2 + 17, 23 = 17 ⋅ 1 + 6, 17 = 6 ⋅ 2 + 5, 6 = 5 ⋅ 1 + 1

and back substitution
1 = 6 − 5 = 6 − (17 − 6 ⋅ 2) = 6 ⋅ 3 − 17 = (23 − 17) ⋅ 3 − 17 =

= 23 ⋅ 3 − 17 ⋅ 4 = 23 ⋅ 3 − (63 − 23 ⋅ 2) ⋅ 4 = 63 ⋅ (−4) + 23 ⋅ 11,

hence x1 = −4, y0 = 11 is a particular solution to 63x+23y = 1. We conclude that x0 = −7x1 =
28, y0 = −7y1 = −77 is a particular solution. Thus the general solution is given by

x = 28 + 23t, y = −77 − 63t, t ∈ Z.
Replacing again y by −y we get the general solution to 63x + 7 = 23y given by

x = 28 + 23t, y = 77 + 63t, t ∈ Z.
These values of x, y are both positive when t ≥ −1, therefore the number of plantains in the
pile could be any integer of the form 28 + 23t for t ≥ −1.

10



SOLUTIONS TO PROBLEM SET 2

Section 4.1

Exercise 4. Let a ∈ Z.
Suppose a is even; then a ≡ 0 (mod 4) or a ≡ 2 (mod 4). Since 02 = 0 ≡ 0 (mod 4) and
22 = 4 ≡ 0 (mod 4) we conclude a2 ≡ 0 (mod 4).
Suppose a is odd; then a ≡ 1 (mod 4) or a ≡ 3 (mod 4). Since 12 = 1 ≡ 1 (mod 4) and
32 = 9 ≡ 1 (mod 4) we conclude a2 ≡ 1 (mod 4).

Exercise 30. We will use induction to show that 4n ≡ 1 + 3n (mod 9) for all n ∈ Z≥0.

Base n = 0: 40 = 1 ≡ 1 = 1 + 3 ⋅ 0 (mod 9).
H ypothesis: The result holds for n.

S tep n + 1: We have

4n+1 = 4 ⋅ 4n ≡ 4(1 + 3n) ≡ 4 + 12n (mod 9)
≡ 4 + 3n ≡ 1 + 3(n + 1) (mod 9),

as desired; we used the induction hypothesis in the first congruence.

Exercise 36. Note that the smallest power of 2 which is larger than all the exponents in this
exercise is 28 = 256. Therefore, we will repeatedly square and reduce modulo 47 to compute
2i (mod 47) for 1 ≤ i ≤ 7. Indeed, we have

21 = 2 ≡ 2 (mod 47)
22 = 4 ≡ 4 (mod 47)
24 = 16 ≡ 16 (mod 47)
28 = 256 ≡ 21 (mod 47)
216 ≡ 212 ≡ 18 (mod 47)
232 ≡ 182 ≡ 42 (mod 47)
264 ≡ 422 ≡ 25 (mod 47)
2128 ≡ 252 ≡ 14 (mod 47).

a) Compute 232: We have seen above that 232 ≡ 42 (mod 47)
b) Compute 247: Since 47 = 32 + 8 + 4 + 2 + 1, we have

247 = 23228242221 ≡ 42 ⋅ 21 ⋅ 16 ⋅ 4 ⋅ 2 ≡ 2 (mod 47).

c) Compute 2200: Since 200 = 128 + 64 + 8, we have

2200 = 212826428 ≡ 14 ⋅ 25 ⋅ 21 ≡ 18 (mod 47).
1



Section 4.2

Exercise 2. We will apply the theorem from class that fully describes the solutions of linear
congruences.

a) Solve 3x ≡ 2 (mod 7). Since (3,7) = 1 there is exactly one solution mod 7. Since
3⋅3 = 9 ≡ 2 (mod 7) we conclude that x ≡ 3 (mod 7) is the unique solution of the congruences.

b) Solve 6x ≡ 3 (mod 9). Since (6,9) = 3 there are exactly three non-congruent solutions
mod 9. Note that x0 ≡ 2 (mod 9) is a particular solution; then x ≡ 2 − (9/3)t = 2 − 3t with
0 ≤ t ≤ 2 give all the non-congruent solutions. Indeed, t = 0,1,2 respectively correspond to
the solutions x ≡ 2,8,5 (mod 9).
c) Solve 17x ≡ 14 (mod 21). Since (17,21) = 1 there is exactly one solution. We know that
the solution will correspond to the x-coordinate of a particular solution of the Diophantine
equation 17x − 21y = 14. We compute it by applying the Euclidean algorithm and back
substitution:

21 = 17 ⋅ 1 + 4, 17 = 4 ⋅ 4 + 1, 4 = 4 ⋅ 1 + 0
and

1 = 17 − 4 ⋅ 4 = 17 − (21 − 17) ⋅ 4 = 17 ⋅ 5 − 21 ⋅ 4,
hence x1 = 5, y1 = 4 is a solution to 17x − 21y = 1. Therefore, x0 = 14x1 = 14 ⋅ 5 = 70,
y0 = 14y1 = 14 ⋅ 4 = 56 is a particular solution to 17x − 21y = 14. It follows that x ≡ x0 ≡ 7
(mod 21) is the unique solution to the congruence.

d) Solve 15x ≡ 9 (mod 25). Since (15,25) = 5 and 5 ∤ 9 there are no solutions to the
congruence.

Exercise 6. The congruence 12x ≡ c (mod 30) has solutions if and only if (12,30) = 6
divides c. In the range 0 ≤ c < 30 this occurs for c = 0,6,12,18,24 in which cases there are 6
non-congruent solutions.

Exercise 8. Since 13 is a small number we can solve this exercise by trial and error.

a) Since 7 ⋅ 2 = 14 ≡ 1 (mod 13) we have 2−1 ≡ 7 (mod 13).
b) Since 9 ⋅ 3 = 27 ≡ 1 (mod 13) we have 3−1 ≡ 9 (mod 13).
c) Since 8 ⋅ 5 = 40 ≡ 1 (mod 13) we have 5−1 ≡ 8 (mod 13).
d) Since 6 ⋅ 11 = 66 ≡ 1 (mod 13) we have 11−1 ≡ 6 (mod 13).
Exercise 10.

a) An integer a will have an inverse mod 14 if and only if ax ≡ 1 (mod 14) has a solution,
that is exactly when (a,14) = 1. The numbers a in the interval 1 ≤ a ≤ 14 satisfying this
condition are {1,3,5,9,11,13}.
b) Note that the inverse of a−1 is a so the inverse of a ∈ {1,3,5,9,11,13} must also belong
to this list since it contains all the invertible elements mod 14. Finally, note that

1 ⋅ 1 ≡ 1, 3 ⋅ 5 = 15 ≡ 1, 9 ⋅ 11 = 99 ≡ 1, 13 ⋅ 13 = 169 ≡ 1 (mod 14)
which means that

1−1 ≡ 1, 3−1 ≡ 5, 5−1 ≡ 3 (mod 14)
2



and
9−1 ≡ 11, 11−1 ≡ 9, 13−1 ≡ 13 (mod 14).

Section 4.3

Exercise 2. The question is equivalent to find a solution to the congruences

x ≡ 1 (mod 2), x ≡ 1 (mod 5), x ≡ 0 (mod 3).
The unique modulo 10 solution of the first two congruences is x ≡ 1 (mod 10). Thus the
original system is equivalent to

x ≡ 1 (mod 10), x ≡ 0 (mod 3).
We rewrite the first congruence as an equality, namely x = 1 + 10t, where t is an integer.
Inserting this expression for x into the second congruence, we find that

1 + 10t ≡ 0 (mod 3) ⇔ t ≡ 2 (mod 3),
which means t = 2+ 3s, where s is an integer. Hence any integer x = 1+ 10t = 1+ 10(2+ 3s) =
21 + 30s will be a solution to the problem. For example, taking s = 0 we get x = 21. In the
language of congruences, we have shown that

x ≡ 21 (mod 30),
is the unique solution mod 30.

We now solve this exercise by applying the CRT to the congruences

x ≡ 1 (mod 10), x ≡ 0 (mod 3).
Indeed, we have b1 = 1, b2 = 0, n1 = 10, n2 = 3, M = n1n2 = 30, M1 = M/n1 = 3 and
M2 =M/n2 = 10; the formula for the unique solution modulo M gives

x = b1M1y1 + b2M2y2 = 1 ⋅M1 ⋅ y1 + 0 ⋅M2 ⋅ y2 = 3y1,

where y1 is satisfies M1y1 ≡ 1 (mod n1), that is y1 = 3−1 (mod 10) = 7 (mod 10). We
conclude that

x = 3 ⋅ 7 = 21 (mod 30),
as expected.

Exercise 4. We will use the CRT.

a) Solve
x ≡ 4 (mod 11), x ≡ 3 (mod 17).

We have (11,17) = 1. We have b1 = 4, b2 = 3, n1 = 11, n2 = 17, M = n1n2 = 187, M1 =M/n1 =
17 andM2 =M/n2 = 11; furthermore, we determine y1, y2 by solving the congruencesMiyi ≡ 1
(mod ni), that is

17y1 ≡ 1 (mod 11) and 11y2 ≡ 1 (mod 17).
Both yi can be found by solving the Diophantine equation 17y1 + 11y2 = 1. We only need a
particular solution, and one is easy to find by trial and error: y1 = 2, y2 = −3. Now

x = b1 ⋅M1 ⋅ y1 + b2 ⋅M2 ⋅ y2 = 4 ⋅ 17 ⋅ 2 + 3 ⋅ 11 ⋅ (−3) = 37.

Thus x = 37 is the unique solution modulo M = 187.
3



b) Note that 2, 3 and 5 are pairwise coprime. The first two equations can be rewritten as

x ≡ −1 (mod 2), x ≡ −1 (mod 3)
and by the CRT they are equivalent to x ≡ −1 (mod 6). Thus our system of congruences is
equivalent to

x ≡ −1 (mod 6), x ≡ 3 (mod 5).
We have b1 = −1, b2 = 3, n1 = 6, n2 = 5, M = n1n2 = 30, M1 = M/n1 = 5 and M2 = M/n2 = 6;
furthermore, we easily find that

y1 = 5−1 ≡ −1 (mod 6) and y2 = 6−1 ≡ 1 (mod 5).
Thus by the formula for the unique solution is

x ≡ (−1) ⋅ 5 ⋅ (−1) + 3 ⋅ 6 ⋅ 1 ≡ 23 (mod 30).

c) By looking at the congruences it is easy to see that x = 6 satisfies all of them. Thus by
the CRT we have an unique solution x ≡ 6 (mod 210), since 210 = 2 ⋅ 3 ⋅ 5 ⋅ 7 and 2, 3, 5 and
7 are pairwise coprime.

Alternatively, we can apply the formula

x ≡ 0 ⋅M1 ⋅ y1 + 0 ⋅M2 ⋅ y2 + 1 ⋅M3 ⋅ y3 + 6 ⋅M4 ⋅ y4 (mod 210),
where M3 = 210/5 = 42 and M4 = 210/7 = 30. To determine y3, we solve 42y3 ≡ 1 (mod 5),
or equivalently y3 = 42−1 ≡ 2−1 ≡ 3 mod 5. To determine y4, we solve 30y4 ≡ 1 (mod 7), or
equivalently y4 = 30−1 ≡ 2−1 ≡ 4 mod 7. Now x ≡ 1 ⋅42 ⋅3+6 ⋅30 ⋅4 ≡ 6 (mod 210), as expected.

Exercise 22. If x is the number of gold coins, the problem is equivalent to finding the least
positive solution to the following system of congruences:

x ≡ 3 (mod 17)
x ≡ 10 (mod 16)
x ≡ 0 (mod 15).

As 17,16, and 15 are pairwise coprime, we can use the CRT to find the unique solution
modulo M = 15 ⋅ 16 ⋅ 17 = 4080. Thus the solution is given by the formula

x = 3 ⋅M1 ⋅ y1 + 10 ⋅M2 ⋅ y2 + 0 ⋅M3 ⋅ y3 ≡ 3 ⋅M1 ⋅ y1 + 10 ⋅M2 ⋅ y2 (mod M),
where M1 = 15 ⋅ 16 = 240, M2 = 15 ⋅ 17 = 255, y1 is a solution to the congruence

(15 ⋅ 16)y ≡ 1 (mod 17) ⇐⇒ (−2) ⋅ (−1)y ≡ 2y ≡ 1 (mod 17)
and y2 is a solution to

(15 ⋅ 17)y ≡ 1 (mod 16) ⇐⇒ (−1) ⋅ 1y ≡ −y ≡ 1 (mod 16).
Thus, we can take y1 = 9 and y2 = −1, obtaining

x = 3 ⋅ 240 ⋅ 9 + 10 ⋅ 255 ⋅ (−1) = 3930 (mod 4080).
We conclude that, the number of coins can be 3930+4080n where n is a non-negative integer;
the smallest such number is 3930.
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Section 451

Exercise 2.

a) The last 3 digits of 112250 are 250 which is divisible by 53 = 125, but the last 4 digits are
2250 which is not divisible by 54 = 625. Thus the largest power of 5 dividing 112250 is 3.

b) The last 4 digits of 4860625 are 0625 which is divisible by 54 = 625, but the last 5 digits
are 60625, which is not divisible by 55 = 3125. Thus the largest power of 5 dividing 4860625
is 4.

c) The last 2 digits of 235555790 are 90 which is not divisible by 52 = 25, but 235555790 is
divisible by 5, so the largest power of 5 dividing 235555790 is 1.

d) The last 5 digits of 48126953125 are 53125 which is divisible by 55 = 3125. Dividing
48126953125 by 55 = 3125, we get 15400625. This number is divisible by 54 = 625 but not
55 = 3125. Thus the highest power of 5 dividing 48126953125 is 5 + 4 = 9.

Exercise 4. A number is divisible by 11 if and only if the integer formed by alternatively
sum of its digits is divisible by 11. We use this to test divisibility.

a)

1 − 0 + 7 − 6 + 3 − 7 + 3 − 2 = −1

so 10763732 is not divisible by 11.

b)

1 − 0 + 8 − 6 + 3 − 2 + 0 − 0 + 1 − 5 = 0

so 1086320015 is divisible by 11.

c)

6 − 7 + 4 − 3 + 1 − 0 + 9 − 7 + 6 − 3 + 7 − 5 = 8

so 674310976375 is not divisible by 11.

d)

8 − 9 + 2 − 4 + 3 − 1 + 0 − 0 + 6 − 4 + 5 − 3 + 7 = 10

so 8924310064537 is not divisibly by 11.

Exercise 22. We know that the total cost being x42y cents is divisible by 88 = 8 ⋅ 11 and so
is divisible by both 11 and 23 = 8. Thus 42y is divisible by 23 = 8, and so 2y is divisible by
22 = 4 and y is divisible by 2. The only number 0 ≤ y < 10 satisfying this is y = 4. As x424 is
divisible by 11 we require that

x − 4 + 2 − 4 = x − 6

is divisible by 11. The only number 0 ≤ x < 10 satisfying this is x = 6. Thus the total cost
was $64.24 and each chicken cost $64.24/88 = $0.73.

5



Section 5.5

Exercise 12. We use the fact that
10

∑
i=1

ixi ≡ 0 mod 11.

a) We have
1 ⋅ 0 + 2 ⋅ 1 + 3 ⋅ 9 + 4 ⋅ 8 + 5 ⋅ x5 + 6 ⋅ 3 + 7 ⋅ 8 + 8 ⋅ 0 + 9 ⋅ 4 + 10 ⋅ 9 ≡ 5x2 + 8 ≡ 0 (mod 11).

Thus x5 ≡ (−8) ⋅ 5−1 ≡ 3 ⋅ 9 ≡ 5 (mod 11), and the missing digit is x5 = 5.

b) We have
1 ⋅ 9 + 2 ⋅ 1 + 3 ⋅ 5 + 4 ⋅ 5 + 5 ⋅ 4 + 6 ⋅ 2 + 7 ⋅ 1 + 8 ⋅ 2 + 9 ⋅ x9 + 10 ⋅ 6 ≡ 9x9 + 7 ≡ 0 (mod 11).

Thus x9 ≡ (−7) ⋅ 9−1 ≡ 4 ⋅ 5 ≡ 9 (mod 11), and the missing digit is x9 = 9.

c) We have
1 ⋅ x1 + 2 ⋅ 2 + 3 ⋅ 6 + 4 ⋅ 1 + 5 ⋅ 0 + 6 ⋅ 5 + 7 ⋅ 0 + 8 ⋅ 7 + 9 ⋅ 3 + 10 ⋅ 10 ≡ x1 + 8 ≡ 0 (mod 11).

Thus x1 ≡ −8 ≡ 3 (mod 11), and the missing digit is x1 = 3.

Exercise 13. Let xi denote the digits of 0−07−289095−0 which is an ISBN10 code obtained
by transposing two digits of a valid ISBN10 code. Let S denote the sum

S =
10

∑
i=1

ixi = 3 ⋅ 7 + 4 ⋅ 2 + 5 ⋅ 8 + 6 ⋅ 9 + 7 ⋅ 0 + 8 ⋅ 9 + 9 ⋅ 5 + 10 ⋅ 0 ≡ 9 (mod 11),

hence S /≡ 0 (mod 11) (as expected, since the code is invalid).

Let S′ denote the sum corresponding to the original code. We have S′ ≡ 0 (mod 11). Suppose
that the jth and kth digits were transposed. Then, to reconstruct S′ from S, we subtract the
incorrectly positioned digits and add the correct ones, that is

S′ = S − jxj − kxk + jxk + kxj = S + (j − k)(xk − xj).
Now, S′ ≡ S + (j − k)(xk − xj) (mod 11) is equivalent to

0 ≡ 9 + (j − k)(xk − xj) (mod 11) ⇐⇒ (j − k)(xk − xj) ≡ −9 (mod 11).
By trial and error we find that this is satisfied by j = 7, k = 8 and no other cases. Thus the
correct ISBN-10 is 0 − 07 − 289905 − 0.
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SOLUTIONS TO PROBLEM SET 3

Section 6.1

Exercise 4. We want to find r ∈ Z such that

5!25! ≡ r (mod 31) and 0 ≤ r ≤ 30.

By Wilson’s theorem 30! ≡ −1 (mod 31). Then,

5!25! ≡ 25! ⋅ (−26) ⋅ (−27) ⋅ (−28) ⋅ (−29) ⋅ (−30) ≡ (−1)530! ≡ (−1)6 ≡ 1 (mod 31),

that is r = 1.

Exercise 10. We want to find r ∈ Z such that

62000 ≡ r (mod 11) and 0 ≤ r ≤ 10.

Since 11 is prime and (6,11) = 1 by Fermat’s little theorem we have 610 ≡ 1 (mod 11). Then,

62000 = (610)200 ≡ 1200 ≡ 1 (mod 11),

thus r = 1.

Exercise 12. We want to find r ∈ Z such that

21000000 ≡ r (mod 17) and 0 ≤ r ≤ 16.

Since 17 is prime and (2,17) = 1 by FLT we have 216 ≡ 1 (mod 17). Then,

21000000 = (216)22
⋅56 ≡ 1 (mod 17),

thus r = 1.

Exercise 24. It is a corollary of FLT that ap ≡ a (mod p) for all a ∈ Z. Then

1p + 2p + 3p + . . . + (p − 1)p ≡ 1 + 2 + 3 + . . . + (p − 1) (mod p).

Note that since p is odd p − 1 is even and

p − p − 1

2
= 2p − p + 1

2
= p + 1

2
.

Moreover, we can rearrange the sum above as the following sum of (p − 1)/2 terms

1 + 2 + 3 + . . . + (p − 1) ≡ (1 + (p − 1)) + (2 + (p − 2)) + . . . + (p − 1

2
+ p + 1

2
) (mod p)

≡ p + p + . . . p ≡ 0 (mod p).
1



Section 6.2

Exercise 2. Note that 45 = 9 ⋅ 5 is composite and (17,45) = (19,45) = 1.

We have

174 ≡ 24 ≡ 16 ≡ 1 (mod 5) and 174 ≡ (−1)4 ≡ 1 (mod 9).

Since (5,9) = 1 the CRT implies that 174 ≡ 1 (mod 45), therefore

1744 = (174)11 ≡ 1 (mod 45)

and we conclude 45 is a pseudoprime for the base 17.

We have
192 ≡ (−1)2 ≡ 1 (mod 5) and 192 ≡ 12 ≡ 1 (mod 9).

Since (5,9) = 1 the CRT implies that 192 ≡ 1 (mod 45), therefore

1944 = (192)22 ≡ 1 (mod 45)

and we conclude 45 is a pseudoprime for the base 19.

Exercise 8. Let p be prime and write N = 2p − 1.

Suppose N is composite; hence p ≥ 3. Since (2, p) = 1 we have 2p−1 ≡ 1 (mod p) by FLT and
so 2p−1 − 1 = pk for some odd k ∈ Z. Thus

N − 1 = 2p − 2 = 2(2p−1 − 1) = 2pk.

Note also that 2p = N + 1 ≡ 1 (mod N); thus

2N−1 = 22pk = (2p)2k ≡ 1 (mod N),

that is N is a pseudoprime to the base 2.

Exercise 12. An odd composite N > 0 is a strong pseudoprime for the base b if it fools
Miller’s Test in base b. Recall that to be possible to apply the (k +1)-th step of Miller’s test
in base b we need

b(N−1)/2
k ≡ 1 (mod N) and N − 1 is divisible by 2k+1.

Let N = 25. We have N − 1 = 25 − 1 = 24 = 23 ⋅ 3. We first observe that

76 = (72)3 ≡ 493 ≡ (−1)3 ≡ −1 (mod 25).

We now apply Miller’s test

724 ≡ (76)4 ≡ (−1)4 ≡ 1 (mod 25) (i.e. 25 is a pseudoprime to base 7),
712 ≡ (76)2 ≡ (−1)2 ≡ 1 (mod 25),
76 ≡ −1 (mod 25);

despite the fact that 6 is divisible by 2 the last congruence means we have to stop.

Therefore 25 fools the test, i.e. it is a strong pseudoprime to the base 7.
2



Exercise 18.

a) Let m ∈ Z>0 be such that 6m + 1, 12m + 1 and 18m + 1 are prime numbers. Write
n = (6m + 1)(12m + 1)(18m + 1) and let b ∈ Z≥2 satisfy (b, n) = 1.

As 6m+ 1 ∣ n we also have (6m+ 1, b) = 1 hence b6m ≡ 1 (mod 6m+ 1) by FLT. Similarly, we
conclude also that

b12m ≡ 1 (mod 12m + 1) and b18m ≡ 1 (mod 18m + 1).
Now note that

n = 6 ⋅ 12 ⋅ 18m3 + (6 ⋅ 12 + 6 ⋅ 18 + 12 ⋅ 18)m2 + 36m + 1

then 6m ∣ n − 1, 12m ∣ n − 1 and 18m ∣ n − 1. Thus the following congruence hold

bn−1 ≡ 1 (mod 6m + 1)
bn−1 ≡ 1 (mod 12m + 1)
bn−1 ≡ 1 (mod 18m + 1)

and since 6m+1, 12m+1 and 18m+1 are pairwise coprime (because they are distinct primes)
by CRT we conclude that bn−1 ≡ 1 (mod n). Since b was arbitrary we conclude that n is a
Carmichael number.

Alternative proof using Korset’s criterion: Let m be a positive integer such that
6m + 1, 12m + 1, and 18m + 1 are primes. Then the number n = (6m + 1)(12m + 1)(18m + 1)
is squarefree. Let p ∣ n be a prime. Then p − 1 = 6m,12m or 18m. Now note that

n = 6 ⋅ 12 ⋅ 18m3 + (6 ⋅ 12 + 6 ⋅ 18 + 12 ⋅ 18)m2 + 36m + 1

then 6m ∣ n − 1, 12m ∣ n − 1 and 18m ∣ n − 1. We conclude that for all primes p ∣ n we have
p − 1 ∣ n − 1, hence n is a Carmichael number by Korset’s criterion.

b) Take respectively m = 1,6,35,45,51.

Section 6.3

Exercise 6. The question is equivalent to find r ∈ Z such that

7999999 ≡ r (mod 10) and 0 ≤ r ≤ 9.

Since (7,10) = 1 and φ(10) = 4 then 74 ≡ 1 (mod 10) by Euler’s theorem.

Note that 999996 = 4 ⋅ 249999, then

7999999 = 7999996 ⋅ 73 = (74)249999 ⋅ 73 ≡ 1 ⋅ 73 ≡ 343 ≡ 3 (mod 10),
hence r = 3 is the last digit of the decimal expansion.

Remark: For the argument above we do not need the factorization 999996 = 4 ⋅ 249999. It
is enough to know that 4 ∣ 999996 which one can check (for example) using the criterion for
divisibility by 4. Indeed, write 999996 = 4k; then

7999999 = 7999996 ⋅ 73 = (74)k ⋅ 73 ≡ 343 ≡ 3 (mod 10),
as above. This is relevant because sometimes it allows to work with very large numbers
without having to find factorizations.
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Exercise 8. Let a ∈ Z satisfy 3 ∤ a or 9 ∣ a.
It is a consequence of FLT that a7 ≡ a (mod 7). We claim that a7 ≡ a (mod 9). Note that
63 = 7 ⋅ 9 and (7,9) = 1. Then by the CRT we conclude that a7 ≡ a (mod 63), as desired.
We will now prove the claim, dividing into two cases:

(i) Suppose 9 ∣ a; then 9 ∣ a7 and a7 ≡ 0 ≡ a (mod 9).
(ii) Suppose 3 ∤ a; then (a,9) = 1. We have φ(9) = 6 and by Euler’s theorem we have

a6 ≡ 1 (mod 9). Thus a7 ≡ a (mod 9), as desired.
Exercise 10. Let a, b ∈ Z>0 be coprime. We have

aφ(b) ≡ 1 (mod b), aφ(b) ≡ 0 (mod a)
and

bφ(a) ≡ 1 (mod a), bφ(a) ≡ 0 (mod b).
Thus we also have

aφ(b) + bφ(a) ≡ 1 (mod a), aφ(b) + bφ(a) ≡ 1 (mod b)
and by the CRT we conclude aφ(b) + bφ(a) ≡ 1 (mod ab), as desired.
Exercise 14. We know from the proof of CRT that the unique solution modulo M = m1 ⋅
. . . ⋅mn to the system of congruences is given by

x = a1M1y1 + a2M2y2 + . . . + arMryr (mod M)
where Mi =M/mi and yi ∈ Z satisfies Miyi ≡ 1 (mod mi). Now note that (Mi,mi) = 1 and
Euler’s theorem implies

M
φ(mi)

i =Mi ⋅Mφ(mi)−1
i ≡ 1 (mod mi),

hence we can take yi =Mφ(mi)−1
i . Inserting in the formula for x we get

x = a1M
φ(m1)

1 + a2M
φ(m2)

2 + . . . + arMφ(mr)

r (mod M),
as desired.

Section 7.1

Exercise 4. Let φ be the Euler φ-function. Let n ∈ Z>0. If n ≠ 1 it has a prime factorization
n = pa1

1 p
a2
2 . . . pak

k where ak ≥ 1 and pi are distinct primes. We have

φ(n) =
k

∏
i=1

pai−1
i (pi − 1).

a) Suppose φ(n) = 1. Since φ(1) = 1 then n = 1 is a solution. Suppose n ≠ 1. From the
formula above it follows that pi − 1 = 1 for all i; thus 2 is the unique prime factor of n, that
is n = 2a1 . Again by the formula we have 1 = φ(2a1) = 2a1−1 which implies a1 = 1, hence n = 2.

Thus φ(n) = 1 if and only if n = 1 or n = 2.

b) Suppose φ(n) = 2; thus n ≠ 1. By the formula pi − 1 ∣ 2 for all i; thus only the primes 2
and 3 can divide n. Write n = 2a13a2 ; if a2 ≠ 0 from the formula we have 3a2−1 ∣ 2 thus a2 = 1.
We conclude that a2 = 0 or a2 = 1. We now divide into two cases:

4



(i) Suppose a2 = 1, i.e. n = 2a1 ⋅ 3. If a1 ≥ 2 then the formula shows that φ(n) = 2 is
divisible by 4, a contradiction. We conclude a1 ≤ 1, that is n = 3 or n = 6. Both are
solutions because φ(3) = φ(6) = 2.

(ii) Suppose a2 = 0, i.e n = 2a1 with a1 ≥ 1. Then φ(n) = 2a1−1 = 2 implies a1 = 2, that is
n = 4.

Thus φ(n) = 2 if and only if n = 3, n = 4 or n = 6.

c) Suppose φ(n) = 3 (hence n ≠ 1). Then pi − 1 = 1 or 3 for all i. Since pi = 4 is not a prime
we conclude that pi − 1 = 1; thus only the prime 2 divide n, that is n = 2a1 with a1 ≥ 1.
Therefore φ(n) = 2a1−1 = 3 which is impossible for any value of a1.

Thus there are no solutions to φ(n) = 3.

d) Suppose φ(n) = 4 (hence n ≠ 1). Again, the formula shows that pi − 1 ∣ 4 for all i; thus
only the primes 2, 3 and 5 can divide n, that is n = 2a13a25a3 with at least one exponent ≥ 1.
If a2 ≥ 2 then 3 ∣ φ(n) = 4, a contradiction; thus a2 ≤ 1. We now divide into the cases:

(i) Suppose a2 = 1, i.e. n = 2a1 ⋅ 3 ⋅ 5a3 . Then
4 = φ(n) = φ(3)φ(2a15a3) = 2φ(2a15a3)

and we conclude φ(2a15a3) = 2. By part (b) the only integers m such that φ(m) = 2
are m = 3,4,6 and among these only m = 4 is of the form 2a15a3 . We conclude that
a1 = 2 and a3 = 0 therefore n = 3 ⋅ 4 = 12.

(ii) Suppose a2 = 0, i.e. n = 2a15a3 . Clearly, a3 ≤ 1 otherwise 5 ∣ φ(n) = 4.
Suppose a3 = 1, that is n = 2a1 ⋅ 5. If a1 = 0 then n = 5 and φ(5) = 4 is a solution; if

a1 ≥ 1 then 4 = φ(n) = 2a1−1 ⋅ 4 implies a1 = 1, that is n = 10.
Suppose a3 = 0, that is n = 2a1 with a1 ≥ 1. Thus φ(n) = 2a1−1 = 4 implies a1 = 3

that is n = 8.

Thus φ(n) = 4 if and only if n = 5,8,10 or 12.

Exercise 8. Suppose φ(n) = 14; hence n > 1. Consider the prime factorization n =
pa1

1 p
a2
2 . . . pak

k where ak ≥ 1 and pi are distinct primes. We have

φ(n) =
k

∏
i=1

pai−1
i (pi − 1).

From the formula it follows pi − 1 ∣ 14 for each prime pi ∣ n, that is pi − 1 ∈ {1,2,7,14};
thus pi = 2,3,8,15 and we conclude that only the primes 2 and 3 can divide n. Write
n = 2a13a2 . We have φ(n) = φ(2a1)φ(3a2) = 14, but from the formula we see that 7 ∤ φ(2a1)
and 7 ∤ φ(3a2), a contradiction.

Thus φ(n) = 14 has no solutions.

Exercise 18. Let n ∈ Z>0 be odd; then (4, n) = 1. Since φ is a multiplicative function we
have φ(4n) = φ(4)φ(n) = 2φ(n), as desired.
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SOLUTIONS TO PROBLEM SET 4

Section 7.2

Exercise 4. Let n ∈ Z>0 and consider its prime decomposition n = 2dpd1
1 ⋯pdr

r , where pi are
distinct odd primes. As σ is multiplicative, we have

σ(n) = σ(2d)σ(pd1
1 )⋯σ(pdr

r ).
Thus σ(n) is odd if and only if all its factors above, which are of the form σ(pk) where p is
a prime, are odd. For any prime p we have σ(pk) = 1 + p +⋯+ pk which is odd if and only if
p +⋯ + pk is even. This is the case when p = 2 or if p is odd but we have an even number of
odd terms in the sum, that is k even.

Thus σ(n) is odd if and only if each odd prime p dividing n occurs with an even exponent
in the prime factorization of n. That is, the sum of the divisors of n is odd if and only if n
is of the form n = 2dpd1

1 ⋯pdr
r with di = 2d′i for all i. Equivalently, when n is of the form 2dm2

for some odd integer m.

Exercise 7. Let p be a prime number and a ∈ Z≥1. The positive divisors of pa are
{1, p, . . . , pa}, therefore τ(pa) = a + 1.

Now, let k > 1 be a positive integer. Thus τ(pk−1) = k, for any prime p. Since this holds for
all primes, we conclude that τ(n) = k has infinitely many solutions.

Exercise 10. For any prime p and integer d ≥ 0 we have τ(pd) = ∣{1, p, . . . , pd}∣ = d + 1.

Let n ∈ Z>0 and consider its prime factorization n = pd1
1 ⋯pdr

r where pi are distinct primes,
and arrange the primes so that d1 ≥ d2 ≥ ⋅ ⋅ ⋅ ≥ dr.

Suppose τ(n) = 4. As τ is multiplicative, we have

τ(n) = (d1 + 1)⋯(dr + 1) = 4

and, in particular, d1 + 1 ∈ {4,2,1}, i.e. d1 = 3,1 or 0.

Suppose d1 = 3; then di + 1 = 1 for i ≥ 2. Thus n = p3
1.

Suppose d1 = 1; then d2 = 1 and di = 0 for i ≥ 3. Thus n = p1p2.

Suppose d1 = 0; then d2 > 0 = d1 which is impossible because we have d1 ≥ d2.

We conclude that n has exactly four divisors if and only if n = p3 for some prime p, or n = p1p2

for distinct primes p1, p2.

Exercise 12. Let k ∈ Z>0 and suppose n > 0 is a solution to σ(n) = k.
As n and 1 are both divisors of n, we have σ(n) ≥ n + 1. Thus n + 1 ≤ k, that is, n ≤ k − 1.
We conclude there are most k − 1 solutions to σ(n) = k. In particular, there are only finitely
many solutions, as desired.

1



Exercise 29. We have to prove both directions of the equivalence.

⇒: Suppose that n > 0 is composite. Then n = ab for some integers a, b such that 1 < a, b < n
and, without loss of generality, suppose 1 < a ≤ b < n. Suppose that a < √n and b < √n; then
n = ab < √n2 = n, a contradiction. We conclude that b ≥ √n.
Therefore, n is divisble at least by the positive integers 1, b and n (note that we do not know
if b ≠ a), hence

σ(n) = ∑
d∣n,d>0

d ≥ 1 + b + n ≥ 1 +
√
n + n > n +

√
n.

⇐: We will prove the contrapositive. That is, if n = 1 or n is a prime then σ(n) ≤ n +√n.
If n = 1 then σ(n) = 1 < 1 +

√
1 = 2, as desired.

Suppose that n is prime; thus n > √n > 1 and we compute

σ(n) = ∑
d∣n,d>0

d = 1 + n < n +
√
n.

Hence, if σ(n) > n +√n, necessarily, n > 1 is not prime, therefore n is composite.

Section 7.3

Exercise 1. By Theorem 7.10, n is an even perfect number if and only if

n = 2m−1(2m − 1),
where m is an integer such that m ≥ 2 and 2m − 1 is prime. To determine whether 2m − 1 is
prime, we use Theorem 7.11, which tells us that m must be prime if 2m − 1 is.

(1) Hence, taking m = 2, we get

n = 21(22 − 1) = 2 ⋅ 3 = 6.

(Since 6 is small we can double-check that σ(6) = 1 + 2 + 3 + 6 = 12, as expected.)
(2) Taking m = 3,

n = 22(23 − 1) = 4 ⋅ 7 = 28.

Again, note that σ(28) = 1 + 2 + 4 + 7 + 14 + 28 = 56, hence 28 is also perfect.
(3) Since m = 4 is not prime, we know that 24 − 1 cannot be prime, hence

n = 23(24 − 1) = 8 ⋅ 15

is not perfect. Hence take m = 5,

n = 24(25 − 1) = 16 ⋅ 31 = 496.

By Theorem 7.10, 496 is perfect.
(4) Similarly, since m = 6 is not prime, we know that 26 − 1 cannot be prime, hence

n = 25(26 − 1) = 32 ⋅ 63

is not perfect. Hence take m = 7,

n = 26(27 − 1) = 64 ⋅ 127 = 8128.

By Theorem 7.10, 8128 is perfect.
2



(5) Take m = 11. Then 211 − 1 = 23 ⋅ 89 is not prime, hence this will not lead us to a
perfect number. Take instead m = 13. Then

n = 212(213 − 1) = 4069 ⋅ 8191 = 33550336.

By Theorem 7.10, 33550336 is perfect.
(6) Take m = 17. Then

n = 216(217 − 1) = 65536 ⋅ 131071 = 8589869056.

By Theorem 7.10, 8589869056 is perfect.

Exercise 8. Recall that n ∈ Z>0 is perfect if σ(n) = 2n and we say it is defficient if σ(n) < 2n.

Let n be a positive integer such that σ(n) ≤ 2n. That is, n is either deficient or perfect.
Suppose a ∣ n and 1 ≤ a < n. To show that a must be deficient, we prove the contrapositive.
That is, if a is not deficient, i.e.

σ(a) ≥ 2a,

then n is neither deficient nor perfect, i.e.
σ(n) > 2n.

Indeed, suppose σ(a) ≥ 2a. Then, since a ∣ n, there exists k ∈ Z>0 such that n = ak. Then, if
c > 0 divides a, we have ck ∣ ak, so ck ∣ n, and

σ(n) = ∑
d∣n,d>0

d > ∑
c∣a,c>0

ck = ( ∑
c∣a,c>0

c)k = σ(a)k ≥ (2a)k = 2n,

as desired.

Exercise 14. We wish to show that
σ(n) = σ(paqb) = (1 + p +⋯ + pa)(1 + q +⋯ + qb) < 2n = 2paqb,

for distinct odd primes p, q and positive integers a, b. Dividing by paqb, this is equivalent to
showing

(1 + 1

p
+⋯ + 1

pa
)(1 + 1

q
+⋯ + 1

qb
) < 2.

By the finite geometric sum, this is equivalent to
1 − p−(a+1)

1 − 1
p

⋅ 1 − q
−(b+1)

1 − 1
q

< 2.

We assume, without loss of generality, that p < q. As p and q are odd, we have p ≥ 3 and
q ≥ 5, thus we have

1 − p−(a+1)

1 − 1
p

⋅ 1 − q
−(b+1)

1 − 1
q

< 1

1 − 1
p

⋅ 1

1 − 1
q

≤ 1

1 − 1
3

⋅ 1

1 − 1
5

= 3

2
⋅ 5
4
= 15

8
< 2.
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SOLUTIONS TO PROBLEM SET 5

Section 9.1

Exercise 2. Recall that for (a,m) = 1 we have ordm a divides φ(m).

a) We have φ(11) = 10 thus ord11 3 ∈ {1,2,5,10}. We check

31 ≡ 3 (mod 11), 32 ≡ 9 (mod 11), 35 ≡ 9 ⋅ 27 ≡ 9 ⋅ 5 ≡ 45 ≡ 1 (mod 11)

Thus ord11 3 = 5.

b) We have φ(17) = 16 thus ord17 2 ∈ {1,2,4,8,16}. We compute

22 ≡ 4 (mod 17), 24 ≡ −1 (mod 17), 28 ≡ (−1)2 ≡ 1 (mod 17)

Thus ord17 2 = 8.

c) We have φ(21) = 2 ⋅ 6 = 12 thus ord21 10 ∈ {1,2,3,4,6,12}. We compute

102 ≡ 16 (mod 21), 103 ≡ 13 (mod 21), 104 ≡ (−5)2 ≡ 4 (mod 21)

and 106 ≡ 4 ⋅ 16 ≡ 1 (mod 21). Thus ord21 10 = 6.

d) We have φ(25) = 20, thus ord25 9 ∈ {1,2,4,5,10,20}. We compute

92 ≡ 81 ≡ 6 (mod 25), 94 ≡ 36 ≡ 11 (mod 25), 95 ≡ 99 ≡ −1 (mod 25).

Thus ord25 9 = 10.

Exercise 6. Recall that a primitive root (PR) modulo m is an element r with maximal
order, that is ordm r = φ(m).

a) Note that φ(4) = 2, so we are looking for an element r such that r2 ≡ 1 (mod 4), while
r /≡ 1 (mod 4). Taking r = 3, we observe that indeed 3 /≡ 1 (mod 4) and φ(4) = 2, so r = 3 is
a PR modulo 4.

b) r = 2 is a PR mod 5, as φ(5) = 4 and 24 = 16 is the first power of 2 congruent to 1 mod 5.

c) r = 3 is a PR mod 10, as φ(10) = 4, 32 = 9 /≡ 1 (mod 10) and the possible orders are
{1,2,4}.

d) Note that φ(13) = 12, hence ord13 a ∈ {1,2,3,4,6,12} for all a ∈ Z such that (a,13) = 1.
For example, we compute

22 ≡ 4 (mod 13), 23 ≡ 8 (mod 13), 24 ≡ 3 (mod 13)

and 26 ≡ 64 ≡ −1 (mod 13). Thus ord13 2 = 12, hence r = 2 is a PR mod 13.

e) Note that φ(14) = 6, hence ord14 a ∈ {1,2,3,6} for all a ∈ Z such that (a,14) = 1. For
example, we compute

32 ≡ 9 (mod 14), 33 ≡ 27 ≡ −1 (mod 14)

and so ord14 3 = 6, that is r = 3 is a PR mod 14.
1



f) Note that φ(18) = 6, hence ord18 a ∈ {1,2,3,6} for all a ∈ Z such that (a,18) = 1. For
example, we compute

52 ≡ 7 (mod 18), 53 ≡ 35 ≡ −1 (mod 18)

and so ord18 5 = 6, that is r = 5 is a PR mod 18.

Exercise 8. We have φ(20) = φ(4)φ(5) = 8, hence ord20(a) ∈ {1,2,4,8} for all a ∈ Z such that
(a,20) = 1. To prove there are no primitive roots mod 20 we have to show that ord20(a) = 8
never occurs.

It suffices to show that for all a such that 0 ≤ a ≤ 19 and (a,20) = 1 we have ad ≡ 1 (mod 20)
for some d ∈ {1,2,4}. Indeed, all such values of a are {1,3,7,9,11,13,17,19}. Clearly, 11 ≡ 1
(mod 20) and direct calculations show that

92 ≡ 112 ≡ 192 ≡ 1 (mod 20) and 34 ≡ 74 ≡ 134 ≡ 174 ≡ 1 (mod 20).

Exercise 12. Let a, b, n ∈ Z satisfy n > 0, (a,n) = (b, n) = 1 and (ordn a,ordn b) = 1.

Write y = ordn a ⋅ ordn b. We have

(ab)y = ayby = (aordn a)ordn b(bordn b)ordn a ≡ 1 ⋅ 1 ≡ 1 (mod n),

hence ordn(ab) ∣ y. Therefore ordn(ab) ≤ ordn a ⋅ ordn b.

To finish the proof, we will now show the opposite inequality ordn(ab) ≥ ordn a ⋅ ordn b.

Note that (b, n) = 1 implies b has an inverse b−1 modulo n. Furthermore, for k ≥ 0 we have
(bk, n) = 1 and the inverse of bk is (b−1)k which is usually denoted b−k. Suppose (ab)x ≡ 1
(mod n), which is equivalent to ax ≡ b−x (mod n), because b−1 exists. We now compute

ax⋅ordn b = (ax)ordn b ≡ (b−x)ordn b ≡ (b−1)xordn b ≡ (bxordn b)−1 ≡ ((bordn b)x)−1 ≡ 1 (mod n),

hence ordn a ∣ x ⋅ ordn b. Since (ordn a,ordn b) = 1 we have ordn a ∣ x.

Note that the argument in the previous paragraph also holds if we swap a and b, so we also
have ordn b ∣ x.

We have just shown that (ab)x ≡ 1 (mod n) implies ordn a ⋅ ordn b ∣ x. In particular, taking
x = ordn(ab) implies ordn(ab) ≥ ordn a ⋅ ordn b, as desired.

We conclude ordn(ab) = ordn a ⋅ ordn b.

Exercise 16. For m = 1 we have ordm a = 1 − 1 = 0 which makes no sense, so m > 1.

Suppose m > 1. By definition φ(m) is the number of integers a in the interval 1 ≤ a ≤ m
satisfying (a,m) = 1. In particular, it follows that 1 ≤ φ(m) ≤m−1, because (m,m) =m > 1.

Let a,m ∈ Z satisfy m > 1 and (a,m) = 1. We know that ordm a ∣ φ(m).

Suppose ordm a =m−1; then φ(m) ≥m−1. We conclude φ(m) =m−1. This can only occur
if m is prime, finishing the proof. Indeed, suppose m is composite hence it has some factor
n in the interval 1 < n <m − 1. Clearly, (n,m) = n ≠ 1 therefore φ(m) is at most m − 2.
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Section 9.2

Exercise 5. We know that there are φ(φ(13)) = φ(12) = 4 incongruent primitive roots
mod 13. For each k in 1 ≤ k ≤ 12 we have (k,13) = 1 and we compute ki (mod 13) for all
i > 0 dividing φ(13) = 12, that is i ∈ {1,2,3,4,6,12}.

From FLT we know that k12 ≡ 1 (mod 13), so the primitive roots are the values of k such
that ki /≡ 1 (mod 13) for all i ∈ {1,2,3,4,6}. We stop when we find four such values of k;
these are {2,6,7,11}.

Alternative proof requiring less computations. Computing 2i (mod 13) for i a positive
divisor of φ(13) = 12, that is i ∈ {1,2,3,4,6,12} (the possible orders of 2 modulo 13) we verify
that 2i /≡ 1 (mod 13) for all i ∈ {1,2,3,4,6}, hence 2 has order 12, so it is a primitive root
mod 13. Thus {2i}, 1 ≤ i ≤ 12 forms a reduced residue system. We also know that

ord13 2
i =

ord13 2

(i,ord13 2)
.

Now, if ord13 2i = 12 then (i,ord13 2) = (i,12) = 1 which occurs exactly when i = 1,5,7,11.
Therefore, 2, 25, 27 and 211 are four non-congruent primitive roots modulo 13.

If we want to obtain the smallest representatives for each of these primitive roots we have
to reduce them modulo 13, obtaining

21 ≡ 2, 25 ≡ 6, 27 ≡ 11, 211 ≡ 7 (mod 13)

to conclude that {2,6,7,11} is a set of all incongruent primitive roots mod 13 with smallest
possible representatives, which was expected by our previous solution.

Exercise 8. Let r be a primitive root mod p, that is ordp r = φ(p) = p − 1.

We first show that r
p−1
2 ≡ −1 mod p. Indeed, denote r

p−1
2 by x; then x2 ≡ rp−1 ≡ 1 mod p.

Hence x ≡ 1 or −1 mod p. But x = r
p−1
2 cannot be 1 mod p, because it would contradict

ordp r = p − 1. Hence x ≡ −1 mod p as claimed.

Now we want to show that −r is a primitive root, that is ordp(−r) = p − 1.

We have that
−r ≡ (−1)r ≡ r

p−1
2
+1 (mod p),

where in the second congruence we used that r
p−1
2 ≡ −1 mod p. We will determine the order

of r
p−1
2
+1 mod p by using the formula

ordp r
k =

ordp r

(ordp r, k)
.

Taking k = p−1
2 + 1 and since ordp r = p − 1 we have to show that (p − 1, p−12 + 1) = 1.

We note that up to this point we have not yet used the hypothesis p ≡ 1 (mod 4).

From p ≡ 1 (mod 4), we can write p as 4m + 1 for some integer m ≥ 1. Then p − 1 = 4m, and
p−1
2 + 1 = 2m + 1. Thus we want to prove that (4m,2m + 1) = 1 for any integer m ≥ 1.

Recall that for all a, b, q ∈ Z with a ≥ b > 0 we have (a, b) = (b, a − bq). This gives

(4m,2m + 1) = (2m + 1,4m − 2(2m + 1)) = (2m + 1,−2) = (2m + 1,2) = 1,
3



as desired. In summary, ordp(−r) = ordp(r2m+1) =
p−1

gcd(4m,2m+1) =
p−1
1 = p − 1, that is −r is a

primitive root.

Exercise 10.

a)

x2 − x has 4 incongruent solutions mod 6, namely, 0,1,3, and 4. Indeed, modulo 6 we have

02 − 0 ≡ 0, 12 − 1 ≡ 0, 22 − 2 ≡ 2 /≡ 0 (mod 6),

32 − 3 ≡ 3 − 3 ≡ 0, 42 − 4 ≡ 4 − 4 ≡ 0, and 52 − 5 ≡ 2 /≡ 0 (mod 6).

b)

Part (a) does not violate Lagrange’s theorem because the modulus in Lagrange’s theorem
must be prime, but the modulus in part a) is composite.

Exercise 16. Let p be a prime of the form p = 2q + 1, where q is an odd prime.

Let a ∈ Z satisfy 1 < a < p − 1; in particular, (a, p) = 1. Since p − a2 ≡ −a2 (mod p) we have
ordp(p − a2) = ordp(−a2). We will show that ordp(−a2) = p − 1.

We know that ordp(−a2) divides φ(p) = p − 1 = 2q. Thus ordp(−a2) = 1,2, q, or 2q. We have
to rule out 1,2 and q. Equivalently, we need to show that

(1) (−a2)2 /≡ 1 (mod p)
(2) (−a2)q /≡ 1 (mod p)

Proof of (1): Assume the contrary. Then, a4 ≡ 1 (mod p). Thus ordp a divides both 4 and
p − 1 = 2q. Hence, ordp a divides gcd(4,2q) = 2. In particular, a2 ≡ 1 (mod p), therefore
a ≡ ±1 (mod p). This contradicts 1 < a < p − 1, completing the proof of (1).

Proof of (2): Assume the contrary, that is (−a2)q ≡ 1 (mod p). Therefore,

1 ≡ (−a2)q ≡ (−1)qa2q ≡ (−1)q ≡ −1 (mod p),

where in the 3rd congruence we applied FLT and in the last one we used the fact that q is
odd. Thus, −1 ≡ 1 (mod p), a contradiction since p > 2.

Section 9.4

Exercise 2. We first note that 5 is a primitive root of 23.

To solve this problem consult the table of indexes relative to 5 modulo 23. It is given as the
answer to problem 1 of Section 9.4.

a) We want to solve 3x5 ≡ 1 (mod 23).

Taking the index of both sides of our equation, gives

ind5(3x
5) ≡ ind5(1) ≡ 0 (mod φ(23) = 22)

which expands into

ind5(3) + 5 ind5(x) ≡ 0 (mod 22) ⇔ 5 ind5(x) ≡ −16 ≡ 6 (mod 22).
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Since 5−1 ≡ 9 (mod 22) we get ind5(x) ≡ 10 (mod 22) which means that x ≡ 9 (mod 23).

b) We want to solve 3x14 ≡ 2 (mod 23). The procedure is similar as before.

Take the index of both sides of our equation, giving ind5(3x14) ≡ ind5(2) ≡ 2 (mod 22).
Now, we expand this into ind5(3) + 14 ind5(x) ≡ 2 (mod 22). Hence, 14 ind5(x) ≡ −14 ≡ 8
(mod 22). We then reduce this equation on all sides by 2, giving us 7 ind5(x) ≡ 4 (mod 11).

Since 7−1 ≡ 8 (mod 11) we obtain ind5(x) ≡ 10 (mod 11). Therefore, ind5(x) ≡ 10,21
(mod 22). Using the table of indices, we find that this means that x ≡ 9,14 (mod 23).

Exercise 3.

a) We want to solve 3x ≡ 2 (mod 23).

We know 5 is a primitive root mod 23. Note that φ(23) = 22. We take the index of both
sides giving

x ind5(3) ≡ 2 (mod 22) ⇔ 16x ≡ 2 (mod 22).

Thus 8x ≡ 1 (mod 11) and since 8−1 ≡ 7 (mod 11) we have x ≡ 7 (mod 11).

Thus, x ≡ 7,18 (mod 22).

b) We want to solve 13x ≡ 5 (mod 23).

If there is such an x, taking the index of both sides we obtain x ind5(13) ≡ 1 (mod 22), or
rather, 14x ≡ 1 (mod 22), which means that 14 is invertible mod 22. But since (14,22) = 2
we know that 14 is not invertible mod 22; thus the initial equation cannot have solutions.

Exercise 4. Consider the equation ax4 ≡ 2 (mod 13).

We check that 2 is a primitive root mod 13. Taking the index of both sides we have ind2(a)+
4 ind2(x) ≡ 1 (mod 12), or rather, 4 ind2(x) ≡ 1 − ind2(a) (mod 12).

Write y = ind2(x). Thus, the above gives the linear congruence

4y ≡ 1 − ind2(a) (mod 12)

which, since gcd(4,12) = 4, will have a solution if and only if 4 ∣ 1− ind2(a). This will be the
case only when ind2(a) ≡ 1,5,9 (mod 12), which correspond to a ≡ 2,6,5 (mod 13).

Alternative proof: If 13 ∣ a then clearly there are no solutions. Suppose 13 ∤ a. Thus a−1
mod 13 exists and we multiply the congruence by it to obtain x4 ≡ 2a−1 (mod 13). Write
d = (4, φ(13)) = (4,12) = 4. Thus, we have seen in class that x4 ≡ 2a−1 (mod 13) will have
solutions if and only if (2a−1)φ(13)/d ≡ 1 (mod 13). This is equivalent to a3 ≡ 8 (mod 13).
Direct computations show this holds exactly when a ≡ 2,5,6 (mod 13), as expected.

Exercise 5. Consider the equation 8x7 ≡ b (mod 29).

We check that 2 is a primitive root mod 29.

If b ≡ 0 (mod 29) then the equation has the solution of x ≡ 0 (mod 29).

Suppose that b /≡ 0 mod 29. Taking the index gives ind2(8) + 7 ind2(x) ≡ ind2(b) (mod 28),
or rather, 7 ind2(x) ≡ ind2(b) − 3 (mod 28).

Write y = ind2(x). The previous gives the linear congruence

7y ≡ ind2(b) − 3 (mod 28),
5



which, since gcd(7,28) = 7, will have a solution if and only if 7 ∣ ind2(b) − 3. This is the case
when ind2(b) ≡ 3,10,17,24 (mod 28), which correspond to b ≡ 8,9,20,21 (mod 29).

We conclude that the complete list of values of b such that the initial equation has solutions
is b ≡ 0,8,9,20,21 (mod 29).

Alternative proof for the case b /≡ 0 (mod 29): Multiply the congruence by 8−1 mod 29
obtaining x7 ≡ 8−1b (mod 29). Write d = (7, φ(29)) = (7,28) = 7. Thus, we have seen in
class that x7 ≡ 8−1b (mod 29) will have solutions if and only if (8−1b)φ(29)/d ≡ 1 (mod 29).
This is equivalent to b4 ≡ 7 (mod 29). Direct computations show this holds exactly when
b ≡ 8,9,20,21 (mod 29).

Exercise 8. Let p be an odd prime and r a primitive root mod p, that is ordp r = φ(p) = p−1.

Note that p − 1 ≡ −1 (mod p). Thus we have to show that

r
p−1
2 ≡ −1 (mod p) and ri /≡ −1 (mod p) for 1 ≤ i < (p − 1)/2.

Since p is odd, p − 1 is even and (r
p−1
2 )2 = rp−1 ≡ 1 (mod p); thus r

p−1
2 ≡ ±1 (mod p). If

r
p−1
2 ≡ 1 (mod p) then ordp r < p − 1, a contradiction. We conclude r

p−1
2 ≡ −1 (mod p).

Suppose that ri ≡ −1 (mod p) for some i < (p − 1)/2; therefore (ri)2 = r2i ≡ 1 (mod p) and
2i < 2(p − 1)/2 = p − 1, which again means ordp r < p − 1, a contradiction.

Exercise 9. Let p be an odd prime. We have φ(p) = p − 1 is even.

Write d = (4, p − 1). From class or Theorem 9.17 in Rosen, we know that x4 ≡ −1 (mod p)

has a solution if and only if (−1)
φ(p)
d ≡ 1 (mod p). Since the order of −1 mod p is 2 we must

have 2 ∣ p−1d . That is, there exists k such that 2k = p−1
(p−1,4) .

Since p − 1 is even we have (p − 1,4) = 2 or 4. If (p − 1,4) = 2 then p−1
(p−1,4) must be odd, a

contradiction. Therefore, (p − 1,4) = 4, so 2k = p−1
4 , or rather, 8k + 1 = p, as required.

Exercise 18. An integer a is called a cubic residue mod p when there is an integer r such
that r3 ≡ a (mod p). In other words, the congruence equation x3 ≡ a (mod p) has a solution.

Let p > 3 be a prime and a an integer not divisible by p. We want to know if the congruence
x3 ≡ a (mod p) has a solution, where a is fixed and we are solving for x.

Note that (a, p) = 1 and let d = gcd(3, p − 1).

By Theorem 9.17 in Rosen a solution exists if and only if a
p−1
d ≡ 1 (mod p).

(1) Suppose p ≡ 2 (mod 3). Then d = 1 and a
p−1
d ≡ ap−1 ≡ 1 (mod p) by FLT.

(2) Suppose p ≡ 1 (mod 3). Then d = 3 and a solution exists if and only if a
p−1
3 ≡ 1 (mod p).

Why is d = 1 in part (1) and d = 3 in part (2)?

Since the only divisors of 3 are 1 and 3 it follows that d = 1 if 3 ∤ p − 1 and d = 3 if 3 ∣ p − 1.

In part (1) we have p − 1 ≡ 1 (mod 3) so p − 1 is not divisible by 3. In part (2) we have
p − 1 ≡ 0 (mod 3) so p − 1 is divisible by 3.

6
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Section 3.6

Exercise 4.

b)

(i) We have
√
73 ≈ 8.5, so t = 9 is the smallest integer ≥

√
73;

(ii) We calculate

92 − 73 = 8

102 − 73 = 27

112 − 73 = 48

122 − 73 = 71

132 − 73 = 96

142 − 73 = 123

152 − 73 = 152

162 − 73 = 183

172 − 73 = 216

182 − 73 = 251

192 − 73 = 288

202 − 73 = 327

212 − 73 = 368

222 − 73 = 411

232 − 73 = 456

242 − 73 = 503

252 − 73 = 552

262 − 73 = 603

272 − 73 = 656

282 − 73 = 711

292 − 73 = 768

302 − 73 = 827

312 − 73 = 888

322 − 73 = 951
1



332 − 73 = 1016

342 − 73 = 1083

352 − 73 = 1152

362 − 73 = 1223

372 − 73 = 1296 = 362

(iii) Thus we have that 73 = 372 − 362 = (37 − 36)(37 + 36) = 1 ⋅ 73 is the only factorization of
73, hence 73 is prime.

c)

(i) We have
√
46009 ≈ 214.5, so t = 215 is the smallest integer ≥

√
46009.

(ii) We calculate

2152 − 46009 = 216

2162 − 46009 = 647

2172 − 46009 = 1080

2182 − 46009 = 1515

2192 − 46009 = 1952

2202 − 46009 = 2391

2212 − 46009 = 2832

2222 − 46009 = 3275

2232 − 46009 = 3720

2242 − 46009 = 4167

2252 − 46009 = 4616

2262 − 46009 = 5067

2272 − 46009 = 5520

2282 − 46009 = 5975

2292 − 46009 = 6432

2302 − 46009 = 6891

2312 − 46009 = 7352

2322 − 46009 = 7815

2332 − 46009 = 8280

2342 − 46009 = 8747

2352 − 46009 = 9216 = 962;

(iii) Thus 46009 = 2352 − 962 = (235 − 96)(235 + 96) = 139 ⋅ 331 is a factorization. Since the
two factors are primes we conclude this is the prime factorization.

d)
2



(i) We have
√
11021 ≈ 104.98, so t = 105 is the smallest integer ≥

√
11021;

(ii) We calculate 1052 − 11021 = 4 = 22;

(iii) Thus we have that 11021 = 1052 − 22 = (105 − 2)(105 + 2) = 103 ⋅ 107 is a factorization.
Since the two factors are prime it is the prime factorization.

Section 6.1

Exercise 27. Let Rk ≡ 2k! (mod 7331117) for k ∈ Z>0. We have Rk+1 ≡ Rk+1
k (mod 7331117).

We successively compute Rk and (Rk−1,7331117) until the latter is different from 1, in which
case we have found a divisor of 7,331,117. Indeed,

R1 = 21 ≡ 2 (mod 7331117), (1,7331117) = 1
R2 = 22 ≡ 4 (mod 7331117), (3,7331117) = 1
R3 = 43 ≡ 64 (mod 7331117), (63,7331117) = 1
R4 = 644 ≡ 2114982 (mod 7331117), (2114981,7331117) = 1
R5 = 21149825 ≡ 2937380 (mod 7331117), (2937379,7331117) = 1
R6 = 29373806 ≡ 6924877 (mod 7331117), (6924876,7331117) = 1
R7 = 69248777 ≡ 3828539 (mod 7331117), (3828538,7331117) = 1
R8 = 38285398 ≡ 4446618 (mod 7331117), (4446617,7331117) = 641

Thus 641 ∣ 7331117.

Section 8.1

Exercise 2. The Caeser cipher uses the encryption function E(x) = x + 3 (mod 26) whose
corresponding decryption function is D(x) = x − 3 (mod 26). We apply D to the numerical
values of the letters to obtain the message

I CAME I SAW I CONQUERED.

Exercise 6. We know that the decryption function corresponding to the affine encryption
function E(x) = 3x + 24 is given by

D(y) = cy + d (mod 26), where c = 3−1 ≡ 9, d ≡ −9 ⋅ 24 ≡ 18.

Using D to decrypt the message we obtain PHONE HOME.

Problem 8. The most commonly occurring letter in the ciphertext is V (8 occurrences)
which has numerical value of 21. It is reasonable to guess this is the image of E, the most
common letter in English. The numerical value of E is 4, therefore, the decryption function
D(y) = y − k must satisfy

D(21) = 21 − k ≡ 4 (mod 26),

that is k = 17. Using D to decode the ciphertext gives

THE VALUE OF THE KEY IS SEVENTEEN.
3



Exercise 10. The most common letters in English are E and T (in this order), therefore it
is reasonable to assume that E is encrypted as X and T is encrypted as Q. In terms of the
affine encryption function E(x) = ax + b (mod 26) this gives rise to the congruences

4a + b ≡ 23 (mod 26) and 19a + b ≡ 16 (mod 26).

Subtracting the first congruence from the second gives 15a ≡ −7 (mod 26), hence a ≡ 3
(mod 26). Then b ≡ 23 − 12 ≡ 11 (mod 26).

Thus the most likely values for a and b are a = 3 and b = 11.

Exercise 12. The two most frequent letters in the cipher text are M (7 occurrences) and R
(6 occurrences). We guess these correspond to E and T . In terms of the affine transformation
E(x) = ax + b (mod 26) we get

4a + b ≡ 12 (mod 26) and 19a + b ≡ 17 (mod 26).

Subtracting the first congruence from the second gives 15a ≡ 5 (mod 26). As (5,26) = 1, this
is equivalent to 3a ≡ 1 (mod 26), which gives a ≡ 9 (mod 26).

Thus b ≡ 12 − 36 ≡ 2 (mod 26). Then the encryption becomes E(x) = 9x + 2 (mod 26) and
its corresponding decryption function is

D(y) = a−1y − a−1b = 3y − 6 (mod 26).

Using this the message decodes to

EVERY ALCHEMIST OF ANCIENT TIMES KNEW HOW TO TURN LEAD INTO GOLD.

Section 8.3

Exercise 6. The encryption function is E(x) = xe (mod p = 29), where e is the encryption
key which satisfies (p − 1, e) = (28, e) = 1. We know that

E(20) ≡ 24 (mod 29) ⇔ 20e ≡ 24 (mod 29).

We calculate
202 ≡ 400 ≡ −6 (mod 29),

204 ≡ 36 ≡ 7 (mod 29),

208 ≡ 49 ≡ 20 (mod 29),

which shows that 207 ≡ 1 (mod 29). Dividing e by 7 with the division algorithm gives

e = 7k + e′, 0 ≤ e′ ≤ 6;

therefore
20e ≡ 207k+e

′

≡ 207k ⋅ 20e
′

≡ 20e
′

≡ 24 (mod 29).

We continue calculating
203 ≡ 54 ≡ 25 ≡ −4 (mod 29),

205 ≡ 202 ⋅ 203 ≡ (−6) ⋅ (−4) ≡ 24 (mod 29)

to find that e′ = 5. We guess that our encryption key is e = e′ = 5 (i.e. k = 0). To find the
corresponding decryption key d we need to solve 5d ≡ 1 (mod φ(29) = 28). We obtain d = 17

4



as a solution. The decryption function is D(y) = y17 (mod 29) and the decoded message
would become

061414030620041818

which corresponds to
GOOD GUESS.

Section 8.4

Exercise 2. Recall that for a quadratic polynomial ax2 + bx + c its two roots are given by
the quadratic resolvent formula

x =
−b ±
√
b2 − 4ac

2a
.

We note that

φ(n) = φ(pq) = (p − 1)(q − 1) = pq − p − q + 1 = n − (p + q) + 1

and so
−(p + q) = φ(n) − n − 1.

Note that p and q are roots of the quadratic polynomial P (x) = (x−p)(x−q), which becomes

P (x) = x2 − (p + q)x + pq = x2 + (φ(n) − n − 1)x + n.

In our case, n = 4386607 and φ(n) = 4382136 and this becomes

P (X) = x2 + (4382136 − 4386607 − 1)x + 4386607 = x2 − 4472x + 4386607.

Using the resolvent formula, we find the roots p and q of P (x) to be

x =
4472 ±

√
44722 − 4 ⋅ 1 ⋅ 4386607

2
= 1453 and 3019.

Exercise 8. The encryption key is (e, n) = (5,2881).

We have 2881 = 43 ⋅ 67. Thus φ(n) = 42 ⋅ 66 = 2772. Using the Euclidean Algorithm, we
compute the decryption key, d ≡ e−1 (mod 2772). This gives d ≡ 1109 (mod 2772). To
decrypt the message, we raise each block in

0504 1874 0347 0515 2088 2356 0736 0468

to the power of 1109 and reduce modulo 2881. This gives us

0400 1902 0714 0214 1100 1904 0200 1004

or EAT CHOCOLATE CAKE.

Exercise 14. Let the moduli be n1, n2, n3 and write n1 = p1q1, n2 = p2q2 and n3 = p3q3, with
pi, qi all prime and pi ≠ qi for fixed i.

First, using Euclidean Algorithm, we compute gcd(n1, n2), gcd(n2, n3), and gcd(n1, n3). If
one of these numbers is not 1, say gcd(n1, n2) ≠ 1, then n1 and n2 have a prime factor in
common, say p1 = p2. Then gcd(n1, n2) = p1 and we have factored n1, thus breaking the
code. Thus can assume gcd(n1, n2) = gcd(n1, n3) = gcd(n2, n3) = 1, that is, the moduli n1,
n2 and n3 are pairwise coprime.

5



We know that each encryption function is Ei(x) = x3 (mod ni) and from a plaintext message
P we intercepted the three ciphertext messages Ci that satisfy 0 ≤ Ci < ni and

P 3 ≡ C1 (mod n1), P 3 ≡ C2 (mod n2), P 3 ≡ C3 (mod n3).

This means that the system of congruences
x ≡ C1 (mod n1), x ≡ C2 (mod n2), x ≡ C3 (mod n3)

has the solution P 3. On the other hand, by the CRT, there is a unique solution C to
C ≡ Ci (mod ni), satisfying 0 ≤ C ≤ n1n2n3 − 1.

Now, P satisfies 0 ≤ P ≤min{n1, n2, n3} − 1, and so P 3 is an integer satisfying
0 ≤ P 3 ≤ (min{n1, n2, n3} − 1)

3 < n1n2n3 − 1,

therefore C = P 3. We can apply CRT recipe to determine P 3 = C from the Ci and ni and
then recover P by taking the cube root.

Exercise 16. Write ni = piqi and suppose n1 ≠ n2. If (n1, n2) > 1 then 1 < (n1, n2) < n1 and
we can factor n1 as n1 = (n1, n2)⋅

n1

(n1,n2) . Thus the two factors in this factorization correspond
in some order to p1 and q1. This allows to calculate φ(n) = (p1 − 1)(q1 − 1) and find d ≡ e−1
mod φ(n), breaking the system.

6
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Section 13.1

Exercise 2. Note that for any integer a we have a2 ≡ 0,1 (mod 3), because

02 ≡ 0 (mod 3), 12 ≡ 1 (mod 3), 22 = 4 ≡ 1 (mod 3).

Let x, y, z ∈ Z>0 form a PPT, that is (x, y, z) = 1 and x2 + y2 = z2.

From the above x2 + y2 ≡ z2 ≡ 0,1 (mod 3), which implies that least one of x2 or y2 is
congruent to 0 modulo 3. WLOG we can assume x2 ≡ 0 (mod 3).

Therefore x2 = x ⋅ x = 3k for some integer k ≠ 0. Since 3 is a prime we conclude that 3 ∣ x.

Suppose we also have y2 ≡ 0 (mod 3). Then, the same argument leads to 3 ∣ y. Thus
3 ∣ x2 +y2 = z2, hence 3 ∣ z which contradicts (x, y, z) = 1. We conclude that 3 ∤ y, as desired.

Exercise 3. Note that for an integer a we have a2 ≡ 0,±1 (mod 5), because

02 ≡ 0, 12 ≡ 1, 22 = 4 ≡ −1, 32 = 9 ≡ −1, 42 = 16 ≡ 1 (mod 5).

Let x, y, z ∈ Z>0 form a PPT, that is (x, y, z) = 1 and x2 + y2 = z2.

From class or Lemma 13.1 in Rosen we have (x, y) = (y, z) = (x, z) = 1, therefore 5 divides
at most one of x, y, z, so if 5 ∣ x or 5 ∣ y the result follows.

To finish the proof, we assume that 5 ∤ x and 5 ∤ y and will show that 5 ∣ z. Indeed, from
the calculations above it follows x2 ≡ ±1 (mod 5) and y2 ≡ ±1 (mod 5), therefore

z2 ≡ x2 + y2 ≡ 0,2,−2 (mod 5).

Since we have a2 /≡ ±2 (mod 5) for all a ∈ Z, we conclude z2 ≡ 0 (mod 5). Therefore,
z2 = z ⋅ z = 5k for some integer k ≠ 0 and since 5 is a prime it follows that 5 ∣ z, as desired.

Exercise 4. Note that for an integer a we have a2 ≡ 0,1 (mod 4), because

02 ≡ 0, 12 ≡ 1, 22 = 4 ≡ 0, 32 = 9 ≡ 1 (mod 4).

Furthermore, we have a2 ≡ 0 (mod 4) if and only if a is even; and a2 ≡ 1 (mod 4) if and only
if a is odd.

Let x, y, z ∈ Z>0 form a PPT, that is (x, y, z) = 1 and x2 + y2 = z2.

Suppose 2 ∤ xy then z2 ≡ x2 + y2 ≡ 2 (mod 4) which is impossible from the above. We
conclude that 2 ∣ xy and WLOG we suppose 2 ∣ y; furthermore, x and z are odd because we
know that (y, x) = (x, z) = 1.

Note that a2 ≡ 1 (mod 8) for any odd integer a, because

12 ≡ 1, 32 = 9 ≡ 1, 52 = 25 ≡ 1, 72 = 49 ≡ 1 (mod 8).

Therefore, y2 = z2 − x2 ≡ 1 − 1 ≡ 0 (mod 8), hence 8 ∣ y2.
1



We have y2 = y ⋅ y = 2 ⋅ 2 ⋅ 2 ⋅ k, for some integer k ≠ 0. Since 2 is prime, we must have 2 ∣ y, i.e
y = 2ky; thus 2ky ⋅2ky = 2 ⋅2 ⋅2 ⋅k which implies k2

y = 2 ⋅k, hence 2 ∣ ky. We conclude that 4 ∣ y.

Exercise 6. We want to show that the integers given by x1 = 3, y1 = 4, z1 = 5 and
xn+1 = 3xn + 2zn + 1, xn+1 = 3xn + 2zn + 2, xn+1 = 4xn + 3zn + 2,

define a PT for all n ≥ 1. We note that the values produced by these formulas are always
positive. We will use induction on n to show they also satisfy the Pythagorean relation.

Base: n = 1. Clearly
x2
1 + y

2
1 = 32 + 42 = 25 = 52 = z21 ,

so that x1, y1, z1 form a PT.

Induction hypothesis: x2
n−1 + y

2
n−1 = z2n−1.

Inductive Step: n > 1. First we observe that
yn = xn + 1

and
z2n = (4xn−1 + 3zn−1 + 2)

2

= 16x2
n−1 + 24xn−1zn−1 + 16xn−1 + 12zn−1 + 9z

2
n−1 + 4.

We now compute
x2
n + y

2
n = x2

n + (xn + 1)
2

= 2x2
n + 2xn + 1

= 2(3xn−1 + 2zn−1 + 1)
2 + 2(3xn−1 + 2zn−1 + 1) + 1

= 18x2
n−1 + 24xn−1zn−1 + 18xn−1 + 12zn−1 + 8z

2
n−1 + 5

= (2x2
n−1 + 2xn−1 + 1) + (16x

2
n−1 + 24xn−1zn−1 + 16xn−1 + 12zn−1 + 8z

2
n−1 + 4)

= x2
n−1 + y

2
n−1 + (16x

2
n−1 + 24xn−1zn−1 + 16xn−1 + 12zn−1 + 8z

2
n−1 + 4)

= z2n−1 + (16x
2
n−1 + 24xn−1zn−1 + 16xn−1 + 12zn−1 + 8z

2
n−1 + 4)

= 16x2
n−1 + 24xn−1zn−1 + 16xn−1 + 12zn−1 + 9z

2
n−1 + 4

= z2n,

where in the third to last equality we have used the induction hypothesis and on the last
equality we used the expression for z2n above. We conclude that

x2
n + y

2
n = z2n,

that is xn, yn, zn is a Pythagorean triple, as desired.

Exercise 13. Suppose that x, y, z is a PT with z = y + 2. Then
x2 + y2 = z2 = (y + 2)2 = y2 + 4y + 4,

so that
x2 = 4(y + 1)

and, in particular, 2 ∣ x2. Thus 2 ∣ x and x = 2k for some k ∈ Z>0. Substituting this back into
the formula x2 = 4(y + 1) yields

x2 = (2k)2 = 4k2 = 4(y + 1),
2



so that y = k2 − 1. Lastly, since z = y + 2, we have z = k2 + 1 and therefore the triple (x, y, z)
is of the form

(x, y, z) = (2k, k2 − 1, k2 + 1).

Finally, we let k ∈ Z>0 and observe that
(2k)2 + (k2 − 1)2 = 4k2 + k4 − 2k2 + 1 = k4 + 2k2 + 1 = (k2 + 1)2,

that is, for all k > 0 the expression above produces PT such that z = y + 2.

Section 13.2

Exercise 3. Recall Fermat’s Little Theorem: if a ∈ Z satisfies (a, p) = 1, then
ap−1 ≡ 1 (mod p).

(a) Clearly, if p ∣ x, p ∣ y or p ∣ z then p ∣ xyz. We now prove the contrapositive statement.

Suppose p ∤ xyz, then p ∤ x, p ∤ y, and p ∤ z, hence by FLT
xp−1 ≡ yp−1 ≡ zp−1 ≡ 1 (mod p).

Therefore,
xp−1 + yp−1 ≡ 1 + 1 = 2 /≡ 1 ≡ zp−1 (mod p),

as desired.

(b) It follows from FLT that for any integer a we have ap ≡ a (mod p). Then,
xp + yp = zp Ô⇒ x + y ≡ z (mod p) ⇔ p ∣ (x + y − z),

as desired.

Exercise 5. We assume that x4 − y4 = z2 has no solutions in non-zero integers.

Let x, y be the length of the legs and z the length of the hypotenuse of a right triangle with
integer sides. WLOG we can assume that x, y, z form a PPT with even y. That is

x2 + y2 = z2, (x, y, z) = 1, y = 2k, k ∈ Z.
From the classification of PPT (Theorem 13.1 in Rosen) we know there are coprime integers
m,n such that

m > n > 0, x =m2 − n2, y = 2mn, z =m2 + n2.

Suppose now the area of the triangle is a square, that is

Area =
1

2
xy = (m2 − n2)mn = r2, r ∈ Z>0.

Since m,n and m2−n2 are positive and pairwise coprime it follows that they are squares (by
Proposition left as homework in class). More precisely, there are positive integers a, b and c
such that

m = a2, n = b2 m2 − n2 = c2.

It now follows that a4 − b4 = c2 which contradicts the first sentence.
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