
Lior Silberman’s Math 412: Problem set 8, due 9/11/2016

Practice: Norms

P1. Call two norms ‖·‖1 ,‖·‖2 on V equivalent if there are constants c,C > 0 such that for all v∈V ,

c‖v‖1 ≤ ‖v‖2 ≤C‖v‖1 .

(a) Show that this is an equivalence relation.

(b) Suppose the two norms are equivalent and that limn→∞ ‖vn‖1 = 0 (that is, that vn
‖·‖1−−−→
n→∞

0).

Show that limn→∞ ‖vn‖2 = 0 (that is, that vn
‖·‖2−−−→
n→∞

0).
(*c) Show the converse of (b) also holds. In other words, two norms are equivalent iff they

determine the same notion of convergence.

Norms
1. Let f (x) = x2 on [−1,1].

(a) For 1≤ p < ∞. Calculate ‖ f‖Lp =
(∫ 1
−1 | f (x)|

p dx
)1/p

.
(b) Calculate ‖ f‖L∞ = sup{| f (x)| :−1≤ x≤ 1}. Check that limp→∞ ‖ f‖Lp = ‖ f‖

∞
.

(c) Calculate ‖ f‖H2 =
(
‖ f‖2

L2 +‖ f ′‖2
L2 +‖ f ′′‖2

L2

)1/2
.

SUPP Show that the H2 norm is equivalent to the norm
(
‖ f‖2

L2 +‖ f ′′‖2
L2

)1/2
.

2. Let A ∈Mn(R). Write ‖A‖p for its `p→ `p operator norm.
(a) Show ‖A‖1 = max j ∑

n
i=1

∣∣ai j
∣∣.

(b) Show that ‖A‖
∞
= maxi ∑

n
j=1

∣∣ai j
∣∣.

RMK See below on duality.

3. The spectral radius of A∈Mn(C) is the magnitude of its largest eigenvalue: ρ(A)=max{|λ |λ ∈ Spec(A)}.
(a) Show that for any norm ‖·‖ on Fn and any A ∈Mn(F), ρ(A)≤ ‖A‖.
(b) Suppose that A is diagonable. Show that there is a norm on Fn such that ‖A‖= ρ(A).
(*c) Show that if A is Hermitian then ‖A‖2 = ρ(A).
(d) Show that if A,B are similar, and ‖·‖ is any norm in Cn, then limm→∞ ‖Am‖1/m = limm→∞ ‖Bm‖1/m

(in the sense that, if one limit exists, then so does the other, and they are equal).
(**e) Show that for any norm on Cn and any A ∈Mn(C), we have limm→∞ ‖Am‖1/m = ρ(A).

4. The Hilbert–Schmidt norm on Mn(C) is ‖A‖HS =
(

∑
n
i, j=1

∣∣ai j
∣∣2)1/2

.

– Show that ‖A‖HS =
(
Tr(A†A)

)1/2.
(a) Show that this is, indeed, a norm.
(b) Show that ‖A‖2 ≤ ‖A‖HS.
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Extra credit: Norms and constructions

5. (Direct sum) Let {(Vi,‖·‖i)}
n
i=1 be normed spaces, and let 1 ≤ p ≤ ∞. For v = (vi) ∈

⊕n
i=1Vi

define

‖v‖=

(
n

∑
i=1
‖vi‖

p
i

)1/p

.

Show that this defines a norm on
⊕n

i=1Vi.
DEF This operation is called the Lp-sum of the normed spaces.

6. (Quotient) Let (V,‖·‖) be a normed space, and let W ⊂V be a subspace. For v+W ∈V/W set
‖v+W‖V/W = inf{‖v+w‖ : w ∈W}.
(a) Show that ‖·‖V/W is 1-homogenous and satisfies the triangle inequality (a “seminorm”).
(b) Show that ‖v+W‖V/W = 0 iff v is in the closure of W , so that ‖·‖V/W is a norm iff W is

closed in V .

For duality in norms see problems A, B. Norming tensor product spaces is complicated.

Supplementary problems: Constructions

A. For v ∈ Cn and 1≤ p≤ ∞ let ‖v‖p be as defined in class.
(a) For 1 < p < ∞ define 1 < q < ∞ by 1

p +
1
q = 1 (also if p = 1 set q = ∞ and if p = ∞ set

q = 1). Given x ∈ C let y(x) = x̄
|x| |x|

p/q (set y = 0 if x = 0), and given a vector x ∈ Cn

define a vector yanalogously.
(i) Show that

∥∥y
∥∥

q = ‖x‖
p/q
p .

(ii) Show that for this particular choice of vy, |∑n
i=1 xiyi|= ‖x‖p

∥∥y
∥∥

q
(b) Now let u,v ∈ Cn and let 1 ≤ p ≤ ∞. Show that |∑n

i=1 uivi| ≤ ‖u‖p ‖v‖q (this is called
Hölder’s inequality).

(c) Conlude that ‖u‖p = max
{
|∑n

i=1 uivi| | ‖v‖q = 1
}

.
(d) Show that ‖u‖p is a seminorm (hint: A(c)) and then that it is a norm.
(e) Show that limp→∞ ‖v‖p = ‖v‖∞

(this is why the supremum norm is usually called the L∞

norm).

B. Let V be a normed space. The operator norm on V ∗ = Homcts(V,F) is called the dual norm.
(a) Let V = Rn and identify V ∗ with Rn via the usual pairing. Show that the norm on V ∗ dual

to the `1-norm is the `∞ norm and vice versa. Show that the `2-norm is self-dual.
(b) Use A(a),(b) to show that the dual to the `p norm on Rn is the `q norm where 1

p +
1
q = 1.

(c) Let U be another normed space and let T : U → V be bounded. Let T ′ : V ′→U ′ be the
algebraic dual map as defined in this course. Show that for every v∗ ∈V ∗ ⊂V ′, T ′v∗ ∈U∗

(that is, it is continuous). We write T ∗ : V ∗→U∗ for the dual map restricted to continuous
functionals.

(d) Show that T ∗ is itself bounded, in that ‖T ∗‖V ∗→U∗ ≤ ‖T‖U→V .
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C. A seminorm on a vector space V is a map V → R≥0 that satisfies all the conditions of a norm
except that it can be zero for non-zero vectors.
(a) Show that for any f ∈V ′, ϕ(v) = | f (v)| is a seminorm.
(b) Construct a seminorm on R2 not of this form.
(c) Let Φ be a family of seminorms on V which is pointwise bounded. Show that ϕ̄(v) =

sup{ϕ(v) | ϕ ∈Φ} is again a seminorm.

Supplementary problem: Continuity

D. Let V,W be normed vector spaces, equipped with the metric topology coming from the norm.
Let T ∈ HomF(V,W ). Show that the following are equivalent:
(1) T is continuous.
(2) T is continuous at zero.
(3) T is bounded: ‖T‖V→W < ∞, that is: for some C > 0 and all v ∈V , ‖T v‖W ≤C‖v‖V .
Hint: the same idea is used in problem P1
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Supplementary problems: Completeness

E. Let {vn}
∞

n=1 be a Cauchy sequence in a normed space. Show that {‖vn‖}
∞

n=1⊂R≥0 is a Cauchy
sequence.

F. Let X be a set. For 1 ≤ p < ∞ set `p(X) = { f : X → C | ∑x∈X | f (x)|p < ∞}, and also set
`∞(X) = { f : X → C | f bounded}.
(a) Show that for f ∈ `p(X) and g∈ `q(X) we have f g∈ `1(X) and |∑x∈X f (x)g(x)| ≤ ‖ f‖p ‖g‖q.

(b) Show that `p(X) are subspaces of CX , and that ‖ f‖p = (∑x∈X | f (x)|p)
1/p is a norm on

`p(X)
(c) Let { fn}∞

n=1 ⊂ `p(X) be a Cauchy sequence. Show that for each x ∈ X , { fn(x)}∞

n=1 ⊂C is
a Cauchy sequence.

(d) Let { fn}∞

n=1 ⊂ `p(X) be a Cauchy sequence and let f (x) = limn→∞ fn(x). Show that f ∈
`p(X).

(e) Let { fn}∞

n=1 ⊂ `p(X) be a Cauchy sequence. Show that it is convergent in `p(X).

G. (The completion) Let (X ,d) be a metric space.
(a) Let {xn} ,{yn} ⊂ X be two Cauchy sequences. Show that {d(xn,yn)}∞

n=1 ⊂ R is a Cauchy
sequence.

DEF Let
(
X̃ , d̃

)
denote the set of Cauchy sequences in X with the distance d̃

(
x,y
)
= limn→∞ d (xn,yn).

(b) Show that d̃ satisfies all the axioms of a metric except that it can be non-zero for distinct
sequences.

(c) Show that the relation x∼ y ⇐⇒ d̃
(
x,y
)
= 0 is an equivalence relation.

(d) Let X̂ = X̃/ ∼ be the set of equivalence classes. Show that d̃ : X̃ × X̃ → R≥0 descends to
a well-defined function d̂ : X̂× X̂ → R≥0 which is a metric.

(e) Show that
(
X̂ , d̂

)
is a complete metric space.

DEF For x ∈ X let ι(x) ∈ X̂ be the equivalence class of the constant sequence x.
(f) Show that ι : X → X̂ is an isometric embedding with dense image.
(g) (Universal property) Show that for any complete metric space (Y,dY ) and any uniformly

continuous f : X → Y there is a unique extension f̂ : X̂ → Y such that f̂ ◦ ι = f .
(h) Show that triples

(
X̂ , d̂, ι

)
satisfying the property of (g) are unique up to a unique isomor-

phism.

Hint for F(d): Suppose that ‖ f‖p = ∞. Then there is a finite set S ⊂ X with (∑x∈S | f (x)|p)
1/p ≥

limn→∞ ‖ fn‖+1.
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