Lior Silberman’s Math 412: Problem set 8, due 9/11/2016

Practice: Norms

P1. Call two norms |||, |||, on V equivalent if there are constants ¢,C > 0 such that forallv € V,
cllvlly <llully <Clll, -

(a) Show that this is an equivalence relation.

11113

(b) Suppose the two norms are equivalent and that lim,, .. ||v,||; = O (that is, that v, —— 0).
n—yoo

Show that lim,,_se ||v,, ||, = O (that is, that v, % 0).
n—oo

(*c) Show the converse of (b) also holds. In other words, two norms are equivalent iff they
determine the same notion of convergence.

Norms
1. Let f(x) =x*on [—1,1].
1
(a) For 1 < p < co. Calculate | f];, = ( N f(x)ypdx)
(b) Calculate || f|[; = sup{|f(x)[ : =1 <x < 1}. Check that limp_e || f[| 1 = [| /|-
12
(©) Caleutate | £l = (113 + 171 +1713)

1/2
SUPP Show that the H? norm is equivalent to the norm <||f||z2 + ||f”||,%2> :

/p

2. LetA € M,(R). Write ||A|, for its £7 — (¥ operator norm.
(a) Show [|Al|; = max; Y, |aij|.
(b) Show that [|A[,, = max; ¥}_, |a;;|.
RMK See below on duality.

3. The spectral radius of A € M,,(C) is the magnitude of its largest eigenvalue: p(A) =max {|A|A € Spec(A)}.
(a) Show that for any norm ||-|| on F" and any A € M,,(F), p(A) < ||A]|.
(b) Suppose that A is diagonable. Show that there is a norm on F" such that ||A|| = p(A).
(*c) Show that if A is Hermitian then ||A||, = p(A).
(d) Show thatif A, B are similar, and ||| is any norm in C", then limy_eo |[|A™||"/™ = limy_.. ||B™]| /™
(in the sense that, if one limit exists, then so does the other, and they are equal).
(**e) Show that for any norm on C" and any A € M,,(C), we have lim,_,. [|A™| 1/m p(A).

1/2
4. The Hilbert-Schmidt norm on M,(C) is ||A|| g = ( " ]aij]2> .

i,j=1
—  Show that ||, = (Tr(A%A))"/*.

(a) Show that this is, indeed, a norm.
(b) Show that ||A||2 < HAHHS
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5.

Extra credit: Norms and constructions

(Direct sum) Let {(V;, -]|;)};, be normed spaces, and let 1 < p < eco. Forv = (v;) € ®_,V;

define
n 1/p
vl = (Z ||2,-||f’) :
i=1

Show that this defines a norm on @}, V;.

DEF This operation is called the L”-sum of the normed spaces.

(Quotient) Let (V, ||-||) be a normed space, and let W C V be a subspace. Forv+W €V /W set

[v+Willyw = inf{[y+w[:weW}.

(a) Show that [|-[|y y is 1-homogenous and satisfies the triangle inequality (a “seminorm”).

(b) Show that [[v+W]{|, y, = 0iff v is in the closure of W, so that ||-[|;,  is a norm iff W is
closedin V.

For duality in norms see problems A, B. Norming tensor product spaces is complicated.

Supplementary problems: Constructions

A. Forye C"and 1 < p <eolet ||y, be as defined in class.

B.

(a) For 1 < p < oo define 1 <q<00by119—|—%:1(alsoifpzlsetq:ooandifp:ooset
g=1). Given x € C let y(x) = ﬁ x|P/? (set y = 0 if x = 0), and given a vector x € C"
define a vector yanalogously.

(i) Show that [[y[|, = ][5/
(ii) Show that for this particular choice of vy, [YiL xiyi| = [Ix], Iy Hq

(b) Now let u,v € C" and let 1 < p < 0. Show that [YiL uvi| < |lul|,[[v[l, (this is called
Holder’s inequality).

(c¢) Conlude that [|ul|, = max{|2?:1 uvil [ |vll, = 1}.

(d) Show that ||u|| » is a seminorm (hint: A(c)) and then that it is a norm.

(e) Show that lim, e [|v[|,, = [[¥]|, (this is why the supremum norm is usually called the L
norm).

Let V be a normed space. The operator norm on V* = Hom(V, F) is called the dual norm.

(a) LetV =R" and identify V* with R" via the usual pairing. Show that the norm on V* dual
to the ¢'-norm is the ¢~ norm and vice versa. Show that the #2-norm is self-dual.

(b) Use A(a),(b) to show that the dual to the /¥ norm on R” is the /7 norm where % + é =1.

(c¢) Let U be another normed space and let T: U — V be bounded. Let T7: V' — U’ be the
algebraic dual map as defined in this course. Show that for every v* € V* C V/, T'v* € U*
(that is, it is continuous). We write T*: V* — U* for the dual map restricted to continuous
functionals.

(d) Show that T* is itself bounded, in that || 7|y« _,;« < ||T|ly_y-
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C. A seminorm on a vector space V is a map V — R that satisfies all the conditions of a norm
except that it can be zero for non-zero vectors.
(a) Show that for any f € V', @(v) = |f(v)| is a seminorm.
(b) Construct a seminorm on R2 not of this form.
(c) Let @ be a family of seminorms on V which is pointwise bounded. Show that ¢(v) =
sup{@(v) | @ € ®} is again a seminorm.

Supplementary problem: Continuity

D. Let V,W be normed vector spaces, equipped with the metric topology coming from the norm.
Let T € Homp(V,W). Show that the following are equivalent:
(1) T is continuous.
(2) T is continuous at zero.
(3) T is bounded: ||T ||, _y < oo, thatis: for some C >0andallv €V, ||Tv|ly, <C|lv[y.
Hint: the same idea is used in problem P1
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Supplementary problems: Completeness

E. Let{v,} _, beaCauchy sequence in a normed space. Show that {||v,||},"_; C R is a Cauchy
sequence.

F. Let X be a set. For 1 < p <ooset /(X)) ={f:X—C|Yex|f(x)|]P <}, and also set

=(X)={f: X - C| f bounded}.

(a) Show thatfor f € /7(X) and g € 4(X) we have fg € £'(X) and |Lcx f(x)g(x)| < 111, l1gll,-

(b) Show that £7(X) are subspaces of C¥, and that 1£1l, = (Exex |f(x)|p)1/p is a norm on
r(X)

(c) Let{fn},_; C ¢P(X) be a Cauchy sequence. Show that for each x € X, {f,,(x)},_, C Cis
a Cauchy sequence.

(d) Let {f,},_; C ¢?(X) be a Cauchy sequence and let f(x) = lim,_,e f,,(x). Show that f €
P (X).

(e) Let{fn},—; C P(X) be a Cauchy sequence. Show that it is convergent in ¢”(X).

G. (The completion) Let (X,d) be a metric space.

(a) Let {x,},{yn} C X be two Cauchy sequences. Show that {d(x,,y,)},_; C R is a Cauchy
sequence.

DEF Let (X , d3 denote the set of Cauchy sequences in X with the distance d (g, X) =lim, e d (X, Yn)-

(b) Show that d satisfies all the axioms of a metric except that it can be non-zero for distinct
sequences.

(c) Show that the relation x ~ y <= d ()_c, X) = 0 is an equivalence relation.

(d) Let X = X/ ~ be the set of equivalence classes. Show that d: X x X — Rx( descends to
a well-defined function d: X x X — Rx( which is a metric.

(e) Show that (X ,cf) is a complete metric space.

DEF For x € X let 1(x) € X be the equivalence class of the constant sequence x.

(f) Show that 1: X — X is an isometric embedding with dense image.

(2) (Universal property) Show that for any complete metric space (Y,dy) and any uniformly
continuous f: X — Y there is a unique extension f: X — ¥ such that fo1 = f.

(h) Show that triples (X .d, l) satisfying the property of (g) are unique up to a unique isomor-
phism.

Hint for F(d): Suppose that || f||, = co. Then there is a finite set § C X with (¥,cs |f(x)|p)1/p >
limy, oo || f]| 4 1-
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