
Math 101 – SOLUTIONS TO WORKSHEET 28
ABSOLUTE CONVERGENCE

1. More Tail Estimates

(1) It is known that ex =
∑∞
n=0

xn

n! .
(a) How close is 1

2 −
1
6 + 1

24 to 1
e?

(b) How many terms are needed to approximate 1
e to within 1

1000?
Solution: The series e−1 =

∑∞
n=0

(−1)n
n! is alternating, and n! is increasing to infinity so that

1
n! monotonically decrease to zero. By the alternating series test, the error is bounded by the next
term.
(a) The next term after 1

24 = 1
4! is −

1
5! =

1
120 so∣∣∣∣1e −

(
1− 1 +

1

2
− 1

6
+

1

24

)∣∣∣∣ ≤ 1

120
.

(b) If we want to approximate 1
e to within 1

1000 we need to keep terms until one is smaller than than.
We have 1

6! =
1

720 and − 1
7! = −

1
5040 so keeping the first seven terms we have∣∣∣∣1e −

(
1

2
− 1

6
+

1

24
− 1

120
+

1

720

)∣∣∣∣ ≤ 1

5040
<

1

1000
.

(2) The error function is (roughly) given by erf(x) =
∑∞
n=0

(−1)n
n!(2n+1)x

2n+1. How many terms are needed
to approximate erf( 1

10 ) to within 10−11?
Solution: Using x = 1

10 gives the series

erf

(
1

10

)
=

∞∑
n=0

(−1)n

n!(2n+ 1)102n+1
.

Since each of the factors of n!(2n + 1)102n+1 is increasing, the terms of the series terms are mono-
tonically decreasing in magnitude, tending to zero, and are clearly alternating in sign. For n = 4 we
have n!(2n+ 1)102n+1 = 24 · 9 · 109 > 100 · 109 = 1011 since 24 · 9 > 20 · 5 = 100. By the alternating
series test taking the first four terms is sufficient:∣∣∣∣erf ( 1

10

)
−
(
1− 1

300
+

1

104
− 1

42 · 107

)∣∣∣∣ < 10−11 .

2. Absolute Convergence

(3) Decide if each sequence/series converges:

�

{
1√
n

}∞
n=1

�
∞∑
n=1

1√
n

�

{
(−1)n√

n

}∞
n=1

�
∞∑
n=1

(−1)n√
n

Solution: limn→1
1√
n
= 0, so also limn→∞

−1√
n
= 0, and by the squeeze theorem limn→∞

(−1)n√
n

=

0, so both sequences converge. The series
∑∞
n=1

1√
n
is a p-series with p = 1

2 < 1 so it diverges while

the series
∑∞
n=1

(−1)n√
n

converges by the alternating series test.
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(4) Place checkmarks
Converges Diverges

Absolutely Conditionally∑∞
n=1(−1)n X∑∞
n=1

1
n2 X∑∞

n=1
(−1)n
n2 X∑∞

n=1
(−1)n
n X∑∞

n=1
sinn
n2 X

(*)
∑∞
n=1

sinn
n X

Solution: * The series
∑∞
n=1(−1)n diverges, for example by the nth element test – the terms

are either +1,−1 and in any case don’t tend to zero.
* The positive series

∑∞
n=1

1
n2 converges (p-series with p = 2 > 1). The series is also absolutely

convergent because each term is equal to its own absolute value.
* In the series

∑∞
n=1

(−1)n
n2 , replacing each term by its absolute value gives the series

∑∞
n=1

1
n2 which

is convergent (see above) so this series is also absolutely convergent.
* Replacing each term in of the series

∑∞
n=1

(−1)n
n by its absolute value gives the series

∑∞
n=1

1
n

which diverges (it’s the harmonic series), so
∑∞
n=1

(−1)n
n is not absolutely convergent. But the series∑∞

n=1
(−1)n
n does converge by the alternating series test: its terms alternate in sign, decrease in

magnitude, and tend to zero. It follows that the series
∑∞
n=1

(−1)n
n converges conditionally.

* Replacing each term in of the series
∑∞
n=1

sinn
n2 by its absolute value gives the positive series∑∞

n=1
|sinn|
n2 which coverges by comparison with the series

∑∞
n=1

1
n2 (we have 0 ≤ |sinn|n2 ≤ 1

n2 for all
n).
* The example

∑∞
n=1

sinn
n is just for flavour – properly dealing with it is beyond the level of Math

101. The basic idea is that as n varies, the angle “n radians” looks like a random angle around the
circle. this makes the numbers sinn be distributed in [−1, 1] according to the sign curve. First,
replacing each term with its absolute value gives the series

∑∞
n=1

|sinn|
n and since the values sinn

are random, they aren’t often close to zero, and you can roughly compare our series to
∑∞
n=1

1/10
n

which diverges. On the other hand, without absolute values there is a lot of cancellation between
the terms (to see the cancellation note that

´ 2π
0

sin θ dθ = 0 and that
∣∣∣´ T0 sin θ dθ

∣∣∣ ≤ 2 no matter

how big T is) and this makes the series
∑∞
n=1

sinn
n converge.

(*) beyond the scope of Math 101

3. Ratio test

(5) Decide whether the following series converge:
(a)

∑∞
n=0

n
2n

Solution: We have
∣∣∣an+1

an

∣∣∣ = n+1
2n+1

/
n
2n = n+1

n ·
2n

2n+1 = 1
2

(
1 + 1

n

)
−−−−→
n→∞

1
2 < 1 so the series

converges by the ratio test.
(b)

∑∞
n=0

n!
2n

Solution: We have
∣∣∣an+1

an

∣∣∣ = (n+1)!
2n+1

/
n!
2n = (n+1)!

n! ·
2n

2n+1 = n+1
2 −−−−→

n→∞
∞ > 1 so the series

diverges by the ratio test.
(c)

∑∞
n=0

2n

n!

Solution: We have
∣∣∣an+1

an

∣∣∣ = 2
n+1 −−−−→n→∞

0 < 1 so the series converges by the ratio test.

(d) For which values of x does
∑∞
n=0 nx

n converge?
Solution: Let an = nxn. Then∣∣∣∣an+1

an

∣∣∣∣ = (n+ 1) |x|n+1

n |x|n
=

(
1 +

1

n

)
|x| −−−−→

n→∞
|x| .
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By the ratio test, the series converges if|x| < 1 and diverges if |x| > 1. If |x| = 1 then
|an| = n |x|n = n −−−−→

n→∞
∞ so the series diverges by the divergence test. We conclude that the

series converges exactly when |x| < 1, that is for x ∈ (−1, 1).
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