
Math 101 – SOLUTIONS TO WORKSHEET 25
THE INTEGRAL TEST

1. The integral test

(1) Decide if each series converges or diverges
(a)

∑∞
n=1

n
en

Solution: Let f(x) = xe−x, so that the series is
∑∞

n=1 f(n). Then f(x) > 0 for all x. Also,
we have f ′(x) = e−x − xe−x = (1 − x)e−x which is negative for x > 1 so f is eventually
decreasing. We know that

´∞
0
xe−x dx converges (see previous worksheet) so by the integral

test our series converges as well.
(b) (Final 2014)

∑∞
n=2

1
n(logn)p (your answer will depend on p!)

Solution: Suppose p > 0 (if p ≤ 0 compare with
∑∞

n=1
1
n – see next lecture) and let

f(x) = 1
x(log x)p so that the series is

∑∞
n=1 f(n). The function f is clearly both positive and

decreasing, so by the integral test the series converges iff
´∞
2
f(x) dx converges. We considerˆ ∞

2

dx

x(log x)p
.

Susbtituting u = log x we have dx
x = du and u→∞as x→∞ so we haveˆ ∞

2

dx

x(log x)p
=

ˆ ∞
2

du

up

which converges when p > 1 and diverges otherwise. By the integral test the same holds for our
series.

(c)
∑∞

n=1
1

n2+1

Solution: Let f(x) = 1
1+x2 which is clearly positive and decreasing. By the integral test

the series
∑∞

n=1 f(n) converges iff the integral
´∞
1

dx
1+x2 does. Butˆ ∞

1

dx

1 + x2
= lim

T→∞
(arctan(T )− arctan(1)) = lim

T→∞
arctan(T )− π

4
=
π

2
− π

4
=
π

4
,

so the integtral and the series converge.
Solution: Let f(x) = 1

1+x2 which is clearly positive and decreasing. By the integral test
the series

∑∞
n=1 f(n) converges iff the integral

´∞
0

dx
1+x2 does. Converges does not depend on

the starting point so we consider
´∞
1

1
1+x2 dx. Now 1

1+x2 < 1
x2 and

´∞
1

dx
x2 converges by the

p-test (2 > 1) so
´∞
1

dx
1+x2 converges by the comparison test, and

∑∞
n=1

1
n2+1 converges by the

integral test.
(2) The integral

´∞
2

x+sin x
1+x2 dx diverges. Why can’t we use the integral test to conlcude that

∑∞
n=2

n+sinn
1+n2

diverges as well?
Solution: The function f(x) = x+sin x

1+x2 isn’t monotone:

f ′(x) =
(1 + cosx)(1 + x2)− 2x(x+ sinx)

(1 + x2)2

=
(1 + cosx− 2)x2 − 2x sinx+ 1 + cosx

(1 + x2)2

=
(cosx− 1)x2 − 2x sinx+ 1 + cosx

(1 + x)2
.
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In particular, if x = 2πk (k ∈ Z) then cosx = 1, sinx = 0 and

f ′(x) =
2

(1 + x2)
> 0 .

We’ll later show that this series diverges.

2. Tail estimates (not examinable in Math 101)

(3) Consider the series
∑∞

n=1
1
n2

(a) Show that
∑∞

n=N+1
1
n2 ≤ 1

N .
Solution: The fucntion f(x) = 1

x2 is decreasing and positive. By the integral test,
∑∞

n=N+1 f(n) ≤´∞
N
f(x) dx =

[
− 1

x

]∞
N

= 1
N .

(b) How many terms to we need to include to approximate the sum of the series within 10−5?
Solution: We have

∑∞
n=1

1
n2 =

∑N
n=1

1
n2 +

∑∞
n=N+1

1
n2 . If N = 105 we see that

0 ≤
∞∑

n=1

1

n2
−

105∑
n=1

1

n2
≤ 10−5 .

(3) (The harmonic series)
(a) Show that

∑N
n=1

1
n ≥ log(N + 1)

Solution:
∑N

n=1
1
n ≥
´ N+1

1
dx
x = log(N + 1).

(b) Show that
∑N

n=1
1
n ≤ (1− log 2) + log(N + 1)

Solution:
∑N

n=1
1
n ≤ 1 +

´ N+1

2
dx
x = 1 + log(N + 1)− log 2.

(4) Bonus problem: γ = limN→∞

(∑N
n=1

1
n − log(N + 1)

)
exists.

(a) For N ≥ 1 set sN =
∑N

n=1
1
n − log(N + 1) (set s0 = 0) and let an = sn − sn−1. Show that

an = 1
n − log

(
1 + 1

n

)
.

Solution: We calculate:

sN − sN−1 =

(
N∑

n=1

1

n
− log(N + 1)

)
−

(
N−1∑
n=1

1

n
− log(N)

)

=

(
N∑

n=1

1

n
−

N−1∑
n=1

1

n

)
− (log(N + 1)− log(N))

=
1

N
− log

(
N + 1

N

)
=

1

N
− log

(
1 +

1

N

)
.

(b) Show that there is C > 0 such that 0 ≤ an ≤ C
n2 for all n ≥ 1. By the comparison test,

∑∞
n=1 an

converges.
Solution: The function f(x) = log (1 + x) is differentiable; we have f ′(x) = 1

1+x , f
′′(x) =

− 1
(1+x)2 , f

(3)(x) = 2
(1+x)3 . Thus f(0) = 0, f ′(0) = 1, f ′′(0) = −1 and hence for x ≥ 0 we have

f(x) = x− 1

2
x2 +

1

3

x3

(1 + ξ)3

for some ξ ∈ (0, x). For 0 ≤ x ≤ 1 we see that ξ ≥ 0 and hence

0 ≤ 1

3

x3

(1 + ξ)3
≤
(

x

3(1 + ξ)3

)
x2 ≤ 1

3
x2 .

It follows that for 0 ≤ x ≤ 1 we have

x− 1

2
x2 ≤ log(1 + x) ≤ x− 1

2
x2 +

1

3
x2
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and hence
1

6
x2 ≤ x− log(1 + x) ≤ 1

2
x2 .

Plugging in x = 1
n gives the claim.

(c) Show that sN =
∑N

n=1 an. It follows that {sN}
∞
n=1 converges.

Solution: This is a telescoping series:
∑N

n=1 an = (s1 − s0)+ (s2 − s1)+ · · ·+(sN − sN−1) =
sN − s0 = sN .

The number γ is called the Euler–Mascheroni constant, its value is about 0.577.
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