Math 538: Problem Set 1

Do a good amount of problems; choose problems based on what you already know and what you need to practice. Examples are important.

Review

- 1. (Rings) All rings are commutative with identity unless specified otherwise (in particular, every subring contains the identity element). Let R be a ring and let $P \triangleleft R$ be a proper prime ideal.
 - (a) Suppose that *P* is of finite index in *R*. Show that *P* is a maximal ideal.
 - (b) Suppose that S is a subring of R. Show that $P \cap S$ is a proper prime ideal of S.
- 2. (Field and Galois Theory) Let L/K be a finite separable extension of fields, and let $\alpha \in L$. Let M_{α} be the map of multiplication by α , thought of as a K-linear endomorphism of L.
 - (a) Show that M_{α} is diagonalizable, and that its spectrum over a fixed algebraic closure \bar{K} of *K* consists of the numbers $\{\iota(\alpha)\}_{\iota\in \operatorname{Hom}_K(L,\bar{K})}$.
 - (b) Show that $\operatorname{Tr}_K^L \alpha = \operatorname{Tr} M_\alpha$, $N_K^L \alpha = \det M_\alpha$.

Quadratic fields

- 3. (The Gaussian Integers)
 - (a) Show that $\mathbb{Z}[i]$ is a Euclidean domain, hence a UFD (hint: show that rounding the real and complex parts of $\frac{z}{w}$ gives a number $q \in \mathbb{Z}[i]$ so that |z - qw| < |w|)
 - (b) Show that $\mathbb{Z}[i]^{\times} = \{\pm 1, \pm i\}.$
 - (c) Let p be a rational prime and consider the ring $\mathbb{Z}[i]/p\mathbb{Z}[i]$ (verify that it has order p^2). Verify that the inclusion $\mathbb{Z} \hookrightarrow \mathbb{Z}[i]$ induces an embedding $\mathbb{Z}/p\mathbb{Z} \hookrightarrow \mathbb{Z}[i]/p\mathbb{Z}[i]$, and hence a homomorphism $\mathbb{F}_p[x]/(x^2+1) \to \mathbb{Z}[i]/p\mathbb{Z}[i]$ where x maps to $i+p\mathbb{Z}[i]$.
 - (d) Show that this map is an isomorphism. Check that $\mathbb{F}_p[x]/(x^2+1)$ is a field iff $p \equiv 3$ (4) and obtain a different proof that a rational prime is inert in $\mathbb{Q}(i)$ iff it is 3 mod 4.
- 4. (The Eisenstein Integers) Let $\omega = \frac{-1+\sqrt{-3}}{2}$ be a primitive cube root of unity, $K = \mathbb{Q}(\omega)$, (a) Show that $\mathbb{Z}[\omega]$ is the set of algebraic integers in K.

 - (b) Check that $N_{\mathbb{Q}}^{K}(a+b\omega) = a^2 ab + b^2$. (c) Realizing $\mathbb{Z}[\omega]$ as a lattice in \mathbb{C} let $\mathcal{F} = \{z \in \mathbb{C} \mid \forall \alpha \in \mathbb{Z}[\omega] : |z| \leq |z \alpha|\}$ be the set of complex numbers closer to zero than to any other element of the lattice. Verify that:
 - (i) \mathcal{F} is closed, and is a polygon hence equal to the closure of its interior.
 - (ii) $\mathbb{C} = \bigcup_{\alpha \in \mathbb{Z}[\omega]} \mathcal{F} + \alpha$.
 - (iii) For any non-zero $\alpha \in \mathbb{Z}[\omega]$, $\mathcal{F} \cap (\mathcal{F} + \alpha) \subset \partial \mathcal{F}$ (hint: if z is in the intersection it is equally close to $0, \alpha$)...
 - (d) Show that for any $z \in \mathcal{F}$, $|z| = \sqrt{Nz} < 1$. Conclude that $\mathbb{Z}[\omega]$ is a Euclidean domain, hence a UFD.
 - (d) Show that $\mathbb{Z}[\boldsymbol{\omega}]^{\times} = \{\pm 1, \pm \boldsymbol{\omega}, \pm \boldsymbol{\omega}^2\}.$
 - (e) Classify the primes of $\mathbb{Z}[\omega]$ following the argument for the Gaussian integers. To check which rational primes remain prime in this ring use both the argument from class (using congruence conditions to rule out $p = a^2 - ab + b^2$ in one case, and the cube root of unity mod p to show that p does factor in the other) and the argument from 3(d),(e) (examine the ring $\mathbb{Z}[\omega]/p\mathbb{Z}[\omega]$ to see if it is a field).

The following exercize is of central importance.

- 5. Let K/\mathbb{Q} be a quadratic extension.
 - (a) Verify for yourself that $K = \mathbb{Q}\left(\sqrt{d}\right)$ for a unique square-free integer $d \neq 1$. Fix such d from now on.
 - (b) Show that $\mathcal{O} = \mathbb{Z} \oplus \mathbb{Z}\sqrt{d} \subset K$ is a subring generated by a \mathbb{Q} -basis of K (an "order"), and that all its elements are algebraic integers.
 - (c) Let $a, b \in \mathbb{Q}$. Show that $a + b\sqrt{d}$ is an algebraic integer iff $2a, a^2 db^2 \in \mathbb{Z}$, and that this forces $2b \in \mathbb{Z}$.
 - forces $2b \in \mathbb{Z}$.

 (d) Show that $\mathcal{O}_K = \mathbb{Z} \oplus \mathbb{Z} \sqrt{d}$ unless $d \equiv 1$ (4), in which case $\mathcal{O}_K = \mathbb{Z} \oplus \mathbb{Z} \frac{1+\sqrt{d}}{2} = \left\{ \frac{a+b\sqrt{d}}{2} \mid a,b \in \mathbb{Z}, a \equiv b \right\}$
 - (e) Show that if d < -3, \mathcal{O}_K has no units except for ± 1 .
 - (f) Let p be an odd rational prime not dividing d. Find a representation of $\mathcal{O}_K/p\mathcal{O}_K$ a-la 3(d) and conclude that $p\mathcal{O}_K$ is a prime ideal iff d is a square mod p. Now apply quadratic reciprocity to get a criterion for the splitting or primes.

RMK In fact, it is possible to prove the law of quadratic reciprocity this way.

The following exercize is less important.

- 6. (The "other" quadratic extension) Let A detnote the ring $\mathbb{Q} \oplus \mathbb{Q}$, with pointwise addition and multiplication (this is the case d = 1 of problem 3).
 - (a) Find a zero-divisor in A it is not a field.
 - (b) Show that the subring $\mathcal{O} = \mathbb{Z} \oplus \mathbb{Z}$ is precisely the set of $x \in A$ which are integral over \mathbb{Z} . (Hint: find the minimal polynomial of $(a,b) \in A$).
 - (c) Let $P \triangleleft \mathcal{O}$ be a prime ideal of finite index. Show that P is of the form $p\mathbb{Z} \oplus \mathbb{Z}$ or $\mathbb{Z} \oplus p\mathbb{Z}$ for a rational prime p (hint: consider the idempotents in \mathcal{O}).
 - (d) Show that \mathcal{O} has non-zero prime ideals of infinite index. In fact, find proper prime ideals P,Q such that $(0) \subseteq P \subseteq Q \subseteq A$.

Number fields

7. Let $K = \mathbb{Q}(\sqrt[3]{2})$. Show that $\mathcal{O}_K = \mathbb{Z}[\sqrt[3]{2}]$.

Let $\mathbb{Q} \subset K \subset L$ be a number fields with rings of integers $\mathcal{O}_K, \mathcal{O}_L$ respectively.

- 8. (Units)
 - (a) Let $\alpha \in \mathcal{O}_L$. Show that $\operatorname{Tr}_K^L \alpha, N_K^L \alpha \in \mathcal{O}_K$.
 - (b) Show that $\varepsilon \in \mathcal{O}_L$ is a unit iff $N_K^L \alpha$ is a unit of \mathcal{O}_K .
- 9. (Ideals)
 - (a) Let $\alpha \in \mathcal{O}_L$. Show that $N_K^L \alpha \in \alpha \mathcal{O}_L$.
 - (b) Conclude that any non-zero ideal $\mathfrak{a} \triangleleft \mathcal{O}_L$ contains an ideal of the form $m\mathcal{O}_L$, $m \in \mathbb{Z} \setminus \{0\}$.
 - (c) Show that every non-zero ideal of \mathcal{O}_L is a free Abelian group of rank $n = [L : \mathbb{Q}]$.

Generalization: Orders in Q-algebras

DEFINITION. Let R be a commutative ring. An (associative, unital) R-algebra is a (possibly non-commutative) unital ring A equipped with a ring homomorphism $f: R \to A$ whose image is central. Equivalently, A is an R-module equipped with an associative, unital product which is R-bilinear.

DEFINITION. Let A be a \mathbb{Q} -algebra. A subring $\mathcal{O} \subset A$ is an *order* of A if it is the free \mathbb{Z} -module generated by a \mathbb{Q} -basis of A.

- 10. Fix a finite-dimensional \mathbb{Q} -algebra A.
 - (a) Show that A contains orders.
 - (b) Let $\mathcal{O} \subset A$ be an order. Show that every $x \in \mathcal{O}$ is integral over \mathbb{Z} .
 - (c) Suppose that A is commutative. Show that A has a unique maximal order.
- 11. Define the *trace* of $x \in A$ as the trace of left multiplication by x. Given $\{x_i\}_{i=1}^n \subset A$ let $D(x_1, ..., x_n) \in M_n(\mathbb{Q})$ be the matrix with i, j entry $\mathrm{Tr}(x_i x_j), \Delta(x_1, ..., x_n) = \det D(x_1, ..., x_n)$.
 - (a) Let $\mathcal{O} \subset A$ be an order. Show that $\operatorname{Tr} x \in \mathbb{Z}$ for all $x \in \mathcal{O}$.
 - (b) Let $\{\omega_i\}_{i=1}^n \subset A$ be a \mathbb{Q} -basis. Show that for any $\{x_i\}_{i=1}^n \subset A$, $\Delta(x_1,\ldots,x_n) = (\det \alpha)^2 \Delta(\omega_1,\ldots,\omega_n)$ where $\alpha \in M_n(\mathbb{Q})$ is the matrix such that $x_i = \sum_{k=1}^n \alpha_{ik} \omega_k$.
 - COR Either D=0 for all *n*-tuples (we say that the trace form is *degenerate*) or $D \neq 0$ for all bases (we say that the trace form is *non-degenerate*). We assume the second case from now on.
 - (c) Let \mathcal{O} be an order with \mathbb{Z} -basis $\{\omega_i\}_{i=1}^n$. Show that the number $\Delta(\omega_1,\ldots,\omega_n)$ is a rational integer, independent of the choice of basis. Denote this $\Delta(\mathcal{O})$.
 - (d) Suppose that $\mathcal{O} \subset \mathcal{O}'$ are two orders. Show that $\Delta(\mathcal{O}) = [\mathcal{O}' : \mathcal{O}]^2 \Delta(\mathcal{O}')$.
 - COR In a non-degenerate Q-algebra every order is contained in a maximal order.
 - (e) Construct a degenerate Q-algebra without maximal orders.

REMARK. Note that this gives a a procedure for finding maximal orders in finite-dimensional \mathbb{Q} -algebras: find a \mathbb{Q} -basis containing 1_A . Scaling its elements gives an order \mathcal{O} , say of discriminant $\Delta(\mathcal{O})$. Let \mathcal{O}' be order containing \mathcal{O} . Then $d = [\mathcal{O}' : \mathcal{O}] \leq \sqrt{\Delta(\mathcal{O})}$. It follows that $d\mathcal{O}' \subset \mathcal{O}$ so $\mathcal{O} \subset \mathcal{O}' \subset \frac{1}{d}\mathcal{O}$. Now $\mathcal{O}/d\mathcal{O} \simeq (\mathbb{Z}/d\mathbb{Z})^n$ where $n = \dim_{\mathbb{Q}} A$. It follows that the set of \mathbb{Z} -submodules of $\frac{1}{d}\mathcal{O}$ containing \mathcal{O} is finite; it remains to check those one-by-one to see if any are orders.

- 12. Now suppose that A is an F-algebra where F is a number field. Let $\mathcal{O} \subset A$ be an order. Show that the \mathcal{O}_F -submodule of A generated by \mathcal{O} is an order as well.
 - COR Every maximal order of A is an \mathcal{O}_F -module.
 - RMK In fact, every order of A which is an \mathcal{O}_F -module is a *free* \mathcal{O}_F -module. We may discuss this later.