
Math 538: Problem Set 1

Do a good amount of problems; choose problems based on what you already know and what
you need to practice. Examples are important.

Review
1. (Rings) All rings are commutative with identity unless specified otherwise (in particular, every

subring contains the identity element). Let R be a ring and let PCR be a proper prime ideal.
(a) Suppose that P is of finite index in R. Show that P is a maximal ideal.
(b) Suppose that S is a subring of R. Show that P∩S is a proper prime ideal of S.

2. (Field and Galois Theory) Let L/K be a finite separable extension of fields, and let α ∈ L. Let
Mα be the map of multiplication by α , thought of as a K-linear endomorphism of L.
(a) Show that Mα is diagonalizable, and that its spectrum over a fixed algebraic closure K̄ of

K consists of the numbers {ι(α)}
ι∈HomK(L,K̄).

(b) Show that TrL
K α = TrMα , NL

Kα = detMα .

Quadratic fields
3. (The Gaussian Integers)

(a) Show that Z[i] is a Euclidean domain, hence a UFD (hint: show that rounding the real and
complex parts of z

w gives a number q ∈ Z[i] so that |z−qw|< |w|)
(b) Show that Z[i]× = {±1,±i}.
(c) Let p be a rational prime and consider the ring Z[i]/pZ[i] (verify that it has order p2).

Verify that the inclusion Z ↪→ Z[i] induces an embedding Z/pZ ↪→ Z[i]/pZ[i], and hence
a homomorphism Fp[x]/(x2 +1)→ Z[i]/pZ[i] where x maps to i+ pZ[i].

(d) Show that this map is an isomorphism. Check that Fp[x]/(x2 + 1) is a field iff p ≡ 3(4)
and obtain a different proof that a rational prime is inert in Q(i) iff it is 3 mod 4.

4. (The Eisenstein Integers) Let ω = −1+
√
−3

2 be a primitive cube root of unity, K = Q(ω),
(a) Show that Z[ω] is the set of algebraic integers in K.
(b) Check that NK

Q(a+bω) = a2−ab+b2.
(c) Realizing Z[ω] as a lattice in C let F = {z ∈ C | ∀α ∈ Z[ω] : |z| ≤ |z−α|} be the set of

complex numbers closer to zero than to any other element of the lattice. Verify that:
(i) F is closed, and is a polygon hence equal to the closure of its interior.
(ii) C =

⋃
α∈Z[ω]F +α .

(iii) For any non-zero α ∈ Z[ω], F ∩ (F + α) ⊂ ∂F (hint: if z is in the intersection it is
equally close to 0,α)..

(d) Show that for any z∈F , |z|=
√

Nz < 1. Conclude that Z[ω] is a Euclidean domain, hence
a UFD.

(d) Show that Z[ω]× =
{
±1,±ω,±ω2}.

(e) Classify the primes of Z[ω] following the argument for the Gaussian integers. To check
which rational primes remain prime in this ring use both the argument from class (using
congruence conditions to rule out p = a2−ab+b2 in one case, and the cube root of unity
mod p to show that p does factor in the other) and the argument from 3(d),(e) (examine
the ring Z[ω]/pZ[ω] to see if it is a field).
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The following exercize is of central importance.
5. Let K/Q be a quadratic extension.

(a) Verify for yourself that K = Q
(√

d
)

for a unique square-free integer d 6= 1. Fix such d
from now on.

(b) Show that O = Z⊕Z
√

d ⊂ K is a subring generated by a Q-basis of K (an “order”), and
that all its elements are algebraic integers.

(c) Let a,b ∈Q. Show that a+b
√

d is an algebraic integer iff 2a,a2−db2 ∈ Z, and that this
forces 2b ∈ Z.

(d) Show thatOK = Z⊕Z
√

d unless d≡ 1(4), in which caseOK = Z⊕Z1+
√

d
2 =

{
a+b
√

d
2 | a,b ∈ Z, a≡ b(2)

}
.

(e) Show that if d <−3, OK has no units except for ±1.
(f) Let p be an odd rational prime not dividing d. Find a representation of OK/pOKa-la 3(d)

and conclude that pOK is a prime ideal iff d is a square mod p. Now apply quadratic
reciprocity to get a criterion for the splitting or primes.

RMK In fact, it is possible to prove the law of quadratic reciprocity this way.

The following exercize is less important.
6. (The “other” quadratic extension) Let A detnote the ring Q⊕Q, with pointwise addition and

multiplication (this is the case d = 1 of problem 3).
(a) Find a zero-divisor in A – it is not a field.
(b) Show that the subring O = Z⊕Z is precisely the set of x ∈ A which are integral over Z.

(Hint: find the minimal polynomial of (a,b) ∈ A).
(c) Let PCO be a prime ideal of finite index. Show that P is of the form pZ⊕Z or Z⊕ pZ

for a rational prime p (hint: consider the idempotents in O).
(d) Show that O has non-zero prime ideals of infinite index. In fact, find proper prime ideals

P,Q such that (0) ( P ( Q ( A.

Number fields
7. Let K = Q( 3

√
2). Show that OK = Z[ 3

√
2].

Let Q⊂ K ⊂ L be a number fields with rings of integers OK,OL respectively.
8. (Units)

(a) Let α ∈ OL. Show that TrL
K α,NL

Kα ∈ OK .
(b) Show that ε ∈ OL is a unit iff NL

Kα is a unit of OK .

9. (Ideals)
(a) Let α ∈ OL. Show that NL

Kα ∈ αOL.
(b) Conclude that any non-zero ideal aCOL contains an ideal of the form mOL, m ∈ Z\{0}.
(c) Show that every non-zero ideal of OL is a free Abelian group of rank n = [L : Q].
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Generalization: Orders in Q-algebras

DEFINITION. Let R be a commutative ring. An (associative, unital) R-algebra is a (possibly
non-commutative) unital ring A equipped with a ring homomorphism f : R→ A whose image is
central. Equivalently, A is an R-module equipped with an associative, unital product which is
R-bilinear.

DEFINITION. Let A be a Q-algebra. A subringO⊂ A is an order of A if it is the free Z-module
generated by a Q-basis of A.

10. Fix a finite-dimensional Q-algebra A.
(a) Show that A contains orders.
(b) Let O ⊂ A be an order. Show that every x ∈ O is integral over Z.
(c) Suppose that A is commutative. Show that A has a unique maximal order.

11. Define the trace of x ∈ A as the trace of left multiplication by x. Given {xi}n
i=1 ⊂ A let

D(x1, . . . ,xn) ∈Mn(Q) be the matrix with i, j entry Tr(xix j), ∆(x1, . . . ,xn) = detD(x1, . . . ,xn).
(a) Let O ⊂ A be an order. Show that Trx ∈ Z for all x ∈ O.
(b) Let {ωi}n

i=1⊂A be a Q-basis. Show that for any {xi}n
i=1⊂A, ∆(x1, . . . ,xn)= (detα)2

∆(ω1, . . . ,ωn)
where α ∈Mn(Q) is the matrix such that xi = ∑

n
k=1 αikωk.

COR Either D = 0 for all n-tuples (we say that the trace form is degenerate) or D 6= 0 for all
bases (we say that the trace form is non-degenerate). We assume the second case from
now on.

(c) LetObe an order with Z-basis {ωi}n
i=1 . Show that the number ∆(ω1, . . . ,ωn) is a rational

integer, independent of the choice of basis. Denote this ∆(O).
(d) Suppose that O ⊂O′ are two orders. Show that ∆(O) = [O′ :O]2 ∆(O′).
COR In a non-degenerate Q-algebra every order is contained in a maximal order.
(e) Construct a degenerate Q-algebra without maximal orders.

REMARK. Note that this gives a a procedure for finding maximal orders in finite-dimensional
Q-algebras: find a Q-basis containing 1A. Scaling its elements gives an order O, say of discrimi-
nant ∆(O). LetO′ be order containingO. Then d = [O′ :O]≤

√
∆(O). It follows that dO′⊂O so

O⊂O′ ⊂ 1
dO. NowO/dO' (Z/dZ)n where n = dimQ A. It follows that the set of Z-submodules

of 1
dO containing O is finite; it remains to check those one-by-one to see if any are orders.

12. Now suppose that A is an F-algebra where F is a number field. Let O ⊂ A be an order. Show
that the OF -submodule of A generated by O is an order as well.
COR Every maximal order of A is an OF -module.
RMK In fact, every order of A which is an OF -module is a free OF -module. We may discuss

this later.
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