Math 538: Problem Set on Adèles

Fix a number field K. For a finite (=non-archimedean) place v of K let K_v be the copmletion, \mathcal{O}_v the valuation ring, \mathfrak{p}_v the maximal ideal, $\boldsymbol{\sigma}_v \in \mathfrak{p}_v \setminus \mathfrak{p}_v^2$ a uniformizer, κ_v the residue field, $q_v = \#\kappa_v$ the size of that field. For an infinite (=archimedean) place write K_v for the completion (this is isomorphic to either \mathbb{R} or \mathbb{C}).

We normalize the absolute values by $\|\varpi_{\nu}\|_{\nu} = q_{\nu}^{-1}$ in the finite case, and $\|z\|_{\nu}$ being the usual absolute value when $K_{\nu} \simeq \mathbb{R}$, the square of the usual absolute value when $K_{\nu} \simeq \mathbb{C}$. Note that when $K = \mathbb{Q}$ this agrees with our prevoius normalizations.

- 1. (The product formula)
 - (a) Show that for all $x \in K$ and all rational primes p, $\prod_{v|p} ||x||_v = \left| N_{\mathbb{Q}}^K x \right|_p$.
 - (b) Using the absolute value $||x+iy|| = x^2 + y^2$ on \mathbb{C} , show that $\prod_{\nu \mid \infty} ||x||_{\nu} = \left| N_{\mathbb{Q}}^K x \right|_{\infty}$ as well.
 - (c) Generalize these formulas to a finite extension L/K of number fields.
 - (d) Show that for each $x \in K$ there is a finite subset $S \subset |K|$ (containing all the archimedean places) such that if $v \notin S$ then $||x||_v \le 1$ (euivalently, $x \in \mathcal{O}_v$).. Show that when $x \in K^\times$ we can assume that $||x||_v = 1$ for all $v \notin S$.
 - (e) Obtain the *productc formula*: for all $x \in K^{\times}$,

$$\prod_{v\in |K|} \|x\|_v = 1.$$

RMK (d) means that the image of K under the diagonal embedding $K \hookrightarrow \prod_{v \in |K|} K_v$ lies in the set

$$\prod_{v\in|K|}' K_v = \left\{\underline{x}\in\prod_v K_v\mid \#\{v\mid x_v\notin\mathcal{O}_v\}<\infty\right\}.$$

- 2. (The restricted direct product) Let V be an index set, and for each $v \in V$ let X_v be a locally compact topological space. Suppose that we have a finite subset $S_0 \subset M$ and for all $v \notin S_0$ a non-empty compact open subset $K_v \subset X_v$.
 - (a) Suppose that the set of $v \in V$ such that X_v is non-compact is infinite. Show that $\prod_{v \in V} X_v$ is not locally compact.
 - (b) Let $\prod_{v \in V}' X_v = \{\underline{x} \in \prod_v X_v \mid \#\{v \in V \setminus S_0 \mid x_v \notin K_v\} < \infty\}$. Show that the same set would have been obtained if we had increased S_0 (and forgotten about the K_v associated to the places now included in S_0).

DEF The set is called the restricted direct product of the X_{ν} (restricted with respect to the K_{ν}).

(c) Endow this set with the topology generated by the basis of sets of the form $U = \prod_{\nu} U_{\nu}$ where $U_{\nu} \subset X_{\nu}$ is open for all ν , and $U_{\nu} = K_{\nu}$ for all but finitely many V. Show that the resulting topological space is locally compact.

DEF This topology is called the restricted direct product topology.

- (e) Suppose that f_{ν} are continuous real-valued functions on X_{ν} so that for all but finitely many ν , f_{ν} is constant on K_{ν} with $|f_{\nu}(k_{\nu})| \leq 1$ for $k_{\nu} \in K_{\nu}$. Show that the function $f(\underline{x}) = \prod_{\nu} f_{\nu}(x_{\nu})$ defines a continuous function on $\prod_{\nu} X_{\nu}$.
- (d) Suppose that X_{ν} are topological groups (or topological rings) and that the K_{ν} are compact open subgroups (subrings). Show that the restericted direct product is a topological group

- (ring) under the pointwise operations (that is, the operations coming from the usual direct product).
- (f) Develop a notion of restricted tensor product based on the observation of (e).

DEFINITION. The *ring of Adèles* of K is the product $\mathbb{A}_K \stackrel{\text{def}}{=} \prod_{\nu \in |K|}' K_{\nu}$, restricted with respect to the compact open subrings $\mathcal{O}_{\nu} \subset K_{\nu}$.

4. (Adeles)

- (a) Show that the *norm* $\|\underline{x}\| = \prod_{v} \|x_{v}\|_{v}$ is a continous function on \mathbb{A}_{K} such that $\|\underline{x} \cdot \underline{y}\| = \|x\| \|y\|$.
- (b) Show that the image of K in \mathbb{A}_K via the diagonal embedding is discrete (hint: use the product formula to find an open neighbourhood of $0 \in K$ which is disjoint from K^{\times}). FACT $K \setminus \mathbb{A}_K$ is compact.
- 5. Let $\{f_j\}_{j=1}^J \subset K[x_1, \dots, x_n]$ be a set of J polynomials in n variables. For any ring R containg K define a set $V(R) = \{\underline{a} \in R^n \mid \forall j : f_j(\underline{a}) = 0\}$.
 - (a) Suppose that R is a topological ring. Show that V(R) is a closed subset of \mathbb{R}^n .
 - (b) Show that $V(\mathcal{O}_{\nu})$ is compact and open in $V(K_{\nu})$ for all finite places of K.
 - (c) Show that there is a natural homeomorphism $V(\mathbb{A}_K) \simeq \prod_{\nu}' V(K_{\nu})$ where the product is restricted with respect to $V(\mathcal{O}_{\nu})$.
 - (d) Show that V(K) is discrete in $V(\mathbb{A}_K)$.
 - RMK In other words, we can interpret $V(\mathbb{A}_K)$ as *n*-tuples of Adeles or infinite vectors, each coordinate of which is an *n*-tuple from K_v ..
- 6. (Idèles) Let $\mathbb{I}_K = \operatorname{GL}_1(\mathbb{A}_K) = \mathbb{A}_K^{\times}$ be the set of invertible Adèles.
 - (a) For a fixed place v show that the map $x \mapsto x^{-1}$ is continuous on K_v^{\times} in the subset topology coming from the inclusion in K.
 - (b) Show that the map $x \mapsto x^{-1}$ is not continuous on \mathbb{I}_K in the subset topology induced from the inclusion $\mathbb{I}_K \subset AK$.
 - (c) Show that setwise \mathbb{I}_K is the same as the product of K_v^{\times} , restricted with respect to the subsets \mathcal{O}_v^{\times} for v finite.
 - (d) Identify \mathbb{I}_K with the subset $\{(x,y) \in \mathbb{A}_K^2 \mid xy = 1\}$. Show that the resulting topology is the same as the restricted direct product topology from (c). We always equip \mathbb{I}_K with this topology.
 - (e) Show that maps of multiplication and inversion $(x \mapsto x^{-1})$ are continuous in the Idèle topology, so that \mathbb{I}_K is a locally compact topological group.

7. (Idèles 2)

- (a) Show that the norm map $\|\cdot\|$ of 4(a) is continuous on \mathbb{I}_K .
- (b) Show that the image of the diagonal embedding $K^{\times} \hookrightarrow \prod_{\nu} K_{\nu}^{\times}$ lies in \mathbb{I}_{K} and is discrete there.
- (c) Show that the image lies in fact in the set or *norm-one idèles* $\mathbb{I}_K^1 = \{\underline{x} \in \mathbb{I}_K \mid ||\underline{x}|| = 1\}$. FACT (Dirichlet Unit Theorem) $K^{\times} \setminus \mathbb{I}_K^1$ is compact.