Math 121: Problem set 6 (due 20/2/12)

Practice problems (not for submission!)

Sections 7.1-7.4

Length, Area, Volume

- 1. Find the volume of the solid obtained by rotating a disc around one of its tangent lines.
 - (a) Slicing by cylinderical shells centered at the axis of rotation.
 - (b) Slicing by planes perpendicular to the axis of rotation.
- 2. A marble sculpture of height H sits on a circular stone plinth (base). The volume of the part of the sculpture lying at height at most z above the plinth (that is, between the plane of the plinth and a parallel plane at height z) is $(4H 3z)z^3$. What is the cross-sectional area of the sculpture at height z?
- 3. Let f be continuous and positive on the interval [a,b], and let S be the surface obtained by revolving the graph of y = f(x) about the x-axis.
 - (a) Argue that the part of the surface lying between the planes $x = x_i$ and $x = x_i + \Delta x$ has approximate area $2\pi f(x_i) \cdot \sqrt{(\Delta x)^2 + (\Delta y)^2}$ where $\Delta y = f(x_i + \Delta x) f(x_i)$.
 - (b) Argue that the surface S has area

$$2\pi \int_{a}^{b} f(x) \sqrt{1 + (f'(x))^{2}} dx$$
.

- 4. Let *R* be the infinite horn obtained by revolving the curve $y = \frac{1}{x^p}$, $x \ge 1$, around the *x* axis.
 - (a) Find the volume of the solid bounded by the horn and the plane $x \ge 1$ (for which p is the volume finite?)
 - (b) Find the center-of-mass of the solid, if it exists.
 - (c) Find the surface area of the horn (for which p is the area finite)?
 - SUPP For some values of *p* the horn has finite volume but infinite surface area. In other words, we can fill the horn with a finite amount of paint yet no finite amount of paint suffices to coat its surface. How is this possible?
- 5. A ball of radius R meters is filled with a heavy gas. This gas sinks to the bottom so that it has density $A(4R-z)\frac{\text{kg}}{\text{m}^3}$ at height z above the bottom of the ball (A is a constant). Find the mass of the gas and the location of its center of mass.

Supplementary problems

- (On the FTC I) Let g be continuous, and let f agree with g at all points but x_0 . Show that $F(x) = \int_a^x f(t) dt$ is differentiable for all x but that $F'(x_0) \neq f(x_0)$.
- B. (on the FTC II) Let $h(x) = \sin \frac{1}{x}$ for $x \neq 0$.
 - (a) Show that $H(x) = \int_0^x h(t) dt$ exists for all x (note that the value of h(0) is irrelevant for this).
 - (b) Show that H(x) is differentiable for all x, and define h(0) so that H'(x) = h(x) for all x.
- C. The gravitational potential at a distance r from a mass m is $\frac{Gm}{r}$ where G is Newton's constant.

 (a) Find the gravitational potential at a distance z above the center of a flat disc of radius Rand mass ρ per unit area.
 - (b) Find the gravitational potential at a distance $r \ge R$ from the center of a ball of radius R and mass ρ per unit volume.
 - Hint: Let the z axis run through the center of the ball and the point at which the potential is being calculated; slice in planes perpendicular to the z-axis and apply (a).
 - (c) Obtain *Newton's formula*: the gravitational potential at a point outside a ball of constant density is $\frac{GM}{r}$ where M is the mass of the ball and r is the distance from the point to the center of the ball.
 - (*d) Show that (c) holds even if the density