
Math 121: Problem set 1 (due 13/1/12)

Submit solutions to numbered problems only. Practice problems are selected from the text for
solving at home. Lettered problems as well as ones labelled SUPP are supplementary, and not for
submission (they cover additional topics or are more abstract). RMK indicates a remark, not an
exercise.

Practice problems (not for submission!)
Section 5.1: problems 1-39
Section 5.2: all problems
Section 5.3: 3-5, 7-17
Section 5.4: all problems.

Induction and the Σ notation
1. Write the following sums using a Σ:

(a)
√

4+
√

5+
√

6+ · · ·+
√

37;
(b) 1−2+4−8+16−32+ · · · so that there are n terms.
(c) 0

1 + 1
2 + 2

4 + 3
8 + 4

16 + 5
32 + · · · so that there are n terms.

2. (Summation formulas)
(a) Evaluate the sums from 1(b),1(c) for n = 10.
(b) Show by induction on n that for q 6= 1, ∑

n−1
k=0 qk = qn−1

q−1 (for n = 0 interpret the LHS as the
empty sum).
Hint: Add qn to both sides.

(c) Show that ∑
n−1
k=0 kqk = q

(q−1)2 (nqn−1(q−1)− (qn−1)) =
Hint: Use a derivative.

(d) Find n so that the sum in 1(c) is within 10−100 of 2.
Hint: Use (1/2)

(1−(1/2))2 = 2 in 2(c).

Riemann sums
3. Interpret the following expressions as Riemann sums. Give the interval, function, partition,

and chosen points.
(a) 1

n ∑
n−1
i=0 sin

( i
n

)
;

(b) 1
n ∑

n
i=1 sin

( i
n

)
;

(c) ∑
n
i=1

n
i2+n2 .

4. In this problem we compare the Riemann sums associated to different partitions. These in-
equalities were crucial in the definition of the Riemann integral given in class. We consider a
function f defined on a closed interval [a,b].
(a) Let P1, P2 be two partitions of [a,b] so that every point of P1 is also a point of P2. Show

that
L( f ,P1)≤ L( f ,P2)≤U( f ,P2)≤U( f ,P1)

Hint: Start with the case where P2 extends P1 by one point.
(b) Now let P1, P2 be any two partitions of [a,b]. Use your answer to (a) to show that L( f ;P1)≤

U( f ,P2), in other words that any lower Riemann sum is smaller than any upper Riemann
sum.
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Supplementary problems on Induction – The factorial function and binomial coefficients (if
you want to practice induction)

Recall that the factorial function is defined by 0! = 1 and for n ≥ 0 by (n + 1)! = (n + 1) ·n!,
that is n! = ∏

n
j=1 j. The binomial coefficients are defined for 0≤ k ≤ n by(

n
k

)
=

n!
k!(n− k)!

.

If k > n≥ 0 we set
(n

k

)
= 0 (for example,

(4
2

)
= 6 while

(2
4

)
= 0).

A. Evaluate
(6

3

)
,
(n

0

)
,
(n

1

)
for all n.

B. (Integrality)
(a) Show that for all n,k ≥ 0 we have

( n
k+1

)
+
(n

k

)
=
(n+1

k+1

)
.

Hint: Direct calculation.
(b) Let A =

{
n ∈ N | ∀k ∈ N :

(n
k

)
∈ N

}
. Show that A = N, that is that all binomial coefficients

are integers.

C. (The Binomial Theorem) Show by induction on n that for all x,y ∈ Rand all integral n ≥ 0,
(x+ y)n = ∑

n
k=0
(n

k

)
xkyn−k.

Suppelementary Problems – The least upper bound proprety (if you want extra
foundational material)

Let A⊂ R. We say that M ∈ Ris an upper bound for A if for all a ∈ A one has a≤M. We say
that M is the least upper bound if M is an upper bound, and for every other upper bound M′ we
have M ≤M′. If A has an upper bound we say that it is bounded above. The notion of lower bound
and bounded below are defined analogously. We say that A is bounded if its both bounded above
and bounded below.
A. For each of the following sets determine whether it is bounded above, and whether it is

bounded below. Give lower or upper bounds or prove that they don’t exist as appropriate.
You may try to find optimal bounds, but the problem isn’t asking for those.
(a)

{
x ∈ R | x2 < 2

}
.

(a)
{

x ∈ R | x3− x≥ 5
}

;
(b)

{
x2−6x+1 | x ∈ R

}
;

(c) {cos(x) | x ∈ R}.
B. Simple properties.

(a) Let A ⊂ R be non-empty and let M be an upper bound for A. Let M′ > M. Show that M′

is also an upper bound.
(b) Assume that A is bounded above. Show that the set {M ∈ R |M is an upper bound for A}

is bounded below.
We now show that R has the least upper bound property: If A⊂ R is non-empty and has an upper
bound, it has a least upper bound. The proof should remind you of the proof of the Intermediate
Value Theorem for continuous functions.
C. Let A⊂R be non-empty, and let M be an upper bound. We define two sequences {an}∞

n=0 ⊂ A,
{Mn}∞

n=0 ⊂ R as follows. First, let a0 be any element of A, and let M0 be any upper bound for
A. Next, given an ∈ A and an upper bound Mn for A, consider an+M

2 . If this is an upper bound
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for A set Mn+1 = an+M
2 and an+1 = an. Otherwise, set Mn+1 = Mn and let an+1 be any element

of A larger than Mn+an
2 .

(a) Show by induction that for all n, an ∈ A while Mn are upper bounds for A. Also show that
an+1 ≥ an and that Mn+1 ≤Mn.

(b) Conclude that for all k, l we have ak ≤Ml .
(c) Show by induction that 0≤Mn−an ≤ 2−n(M0−a0).
(d) Use the completeness axiom from class to get L which is larger than all the an but smaller

than all the Mn.
(d) Show that L is a least upper bound for A.

Hint: You need to check that L is an upper bound but that no smaller number is.

Notation: If A is non-empty and bounded above write supA (read: “supremum of A”) for its least
upper bound.
D. Applications

(a) Let A =
{

x ∈ R | x2 < 2
}

. Show that (supA)2 = 2 and conclude that
√

2 is a real number.
(b) (The Intermediate Value Theorem) Let f (x) be continuous on [a,b], and let f (a) < t <

f (b). Let A = {x ∈ [a,b] | f (x) < t}. Show that A is non-empty and bounded above, that
supA ∈ [a,b], and that f (supA) = t.
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