Math 342, Spring Term 2009
Pre-Final Sheet

April 13, 2009

The exam has been scheduled for Thursday, April 16" between 15:30-18:00 at
Room 100 of the Math Building.

Material

The material for the exam consists of all the material covered in the lectures up
to and including Friday, April 3'¢, as well as Problem Sets 1 through 12.

Structure

The exam will consist of several problems. Problems can be calculational (only
the steps of the calculation are required), theoretical (prove that something
holds) or factual (state a Definition, Theorem, etc). The sample and actual
midterm exams present

Sample paper
1. Let F be a field, V a vector space over F'.

(a) State what it means for a subset W C V to be a subspace.

(b) For V = F* show that W = {(z,y,z,w) €V |z +y=2+w} is a
subspace.

(c) Assume that F' = is the field with ¢ elements. What is #V?
(d) Let U = {(z,y,0,0) € V}. What is #U? Show that #U|#V

(e) Explain why your answer to (d) is a special case of Lagrange’s The-
orem.

2. Find all solutions to the following systems of equations:



(a) 42 =5 (12), where x € Z.

(b {[5]10x + Bloy = 2110 , where x,y € Z/10Z

[4]10z +y = [0]10
(c) 22 =1[2]3, 2 € Z/3Z.
3. PS1 problem 4
4. PS3 problem 9
5. PS10 problem 5.

6. Lot H — ( (1) ; ? 2 ) € Moy 4(Fs) and let C C F4 be the code defined

by C' = {v | Hv = 0}.

(a) For any z,y € F3 show that there is are unique z,w € F3 so that

e C.
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(b) Write a generating matriz for this code. This matrix will represent
x

the encoding function ( Zc ) — where z,w are as in part
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().
(c) What is the weight of this code?

(d) Can this code correct errors?
7. (RS codes)

(a) Given integers k < n, a finite field F', and a subset X C F of size
n, define the Reed-Solomon code of dimension k in F" given by
evaluation at X.

(b) Show that the code you defined has weight at least n — k + 1.

(c) Let F =T, k =2, n =5 You have received the vector v/ =
(2,6,0,0,4) € F> which (up to transmission errors) represents the
values of a linear polynomial at the points X = {1,2,3,4,5} € Fy.
Which linear polynoimal is the maximum likelihood decoding of this
transmission? Prove your claim.

8. The group of rigid symmetries of the square is a subgroup Dy C Sy of
order 8. In contains a cyclic subgroup of order 4 — the rotations — which
we will denote Cy. D4 also contains the reflection by a diagonal, which we
denote w. Using Lagrange’s Theorem show that every symmetry of the
square is either of the form p or 7p for some rotation p € Cy.



Sample solutions

1. Let F be a field, V a vector space over F'.

(a)
(b)

A subset W C V is a subspace if it is non-empty and is closed under
addition and under multiplication by scalars.

Ifer=y=z=w=0then clearly x +y = 2+ w so 0 € W. Also,
if (z,y,2z,w),(z',y,2',w') € W and « € F then the associtativity
and commutativity of addition in F' show that (z +2') + (y+¥') =
(x+y)+ (2’ +y') while (z+2")+ (w+w') = (z4+w)+ (2 +w'). Since
(x+y)=(24+w) and (¢ +¢') = (¢ + w’) it follows that (x + ') +
(y+9y') = (z+2")+ (w+w'), that is that (z,y, z,w)+ (2/, ¢, 2", w') =
(x+a' y+y,z+72, wt+w') € W. We also have a(z+y) = a(z+w).
By the distributive law in F' we have ax + ay = az + aw, that is
that a(x,y, z,w) = (az, ay, az,cw) € W.

V' is the space of 4-tuples of elements drawn from a set of size ¢, so
#V = q".

Similarly, #U = ¢? which divides its square ¢*.

U C V is a subspace. In particular, it is a subset of V' containing the
zero vector and closed under addition. Thinking only of the additive

group (V,0,+), U is a subgroup. Its order must divide that of V' by
Lagrange’s Theorem.

2. Find all solutions to the following systems of equations:

(a)

(b)

(c)

Since 4x is even for all © € Z, 4z — 5 is always odd and in particular
not divisible by 12. It follows that there are no solutions to the
equation.

Let z,y € Z/10Z be solutions to the equation. Multiplying the
second equation by [3]1p and subtracting the two equations shows
[3]1033 = [2]10. Since 7-3 = 1(10) this implies Tr = [7}10[2}10 = [4]10.
The second equation then shows [6]10 +y = [0]10, that is y = [4]10 as
well. We also have 5-4+43-4 = 32 = 2(10). Thus = = [4]10, ¥y = [4]10
is the unique solution to the system of equations.

We have 012 = [0- 0] = [0]s, [13 = [1 - 1Js = [1)s, [23 = [2-2}s =
[4]s = [1]5. Since Z/3Z = {[0], [1],[2]} the equation has no solutions.

3. PS1 problem 4.

4. PS3 problem 9.

5. PS10 problem 5.

6. Let H =

(1) ; % (1) ) € Msy4(F3) and let C' C F4 be the code defined
0

by C = {v| Hv=0}.



(a)

We first show that if z, w exist they are unique. For this let x,y, zw €
x
F3 be such that Z € C. Then z+y+2z =0 and 2y+z+w = 0.

w
Adding z to the first equation, y+2z to the second, we find: z = z+y,
w =y + 2z, and both equatios imply w = y + 2(x + y) = 2z, so that
both z,w and uniquely determined by x,y. Conversely, given z,y
setting z =z +y and w = 2z we have x + y+ 2z =z +y+2(x+y) =
3z+y)=0and 2y+z+w=2y+z+y+2x=3(x+y)=0.

10
0 1
G = 11
2 0
0
. 0 1 .
Since G 1] = 1 € C, the code has weight at most two.
0
x
Conversely, let ZZ/ € C. If x # 0 then w = 2z does not vanish
w

as well (it is the product of two non-zero elements of a field) and the
codeword has weight at least 2. If x = 0 but y # 0 then 2 =y # 0
and the codeword has weight two. If x =y = 0 then z = w = 0 as
well and the codeword vanishes.

Since the weight is two, the code is not guaranteed to correct even all

1-bit errors. For example, if we recieve the trasmission v’ =

it is equally consistent that the sender tramitted and

CNNO oo

O R = O

7. (RS codes)

(a)

Say X = {z;}_, with the z; € F distinct. The Reed-Solomon code
is the set of n-tuples v € F" for which there exists a € F* such that
foralll <i<n,v;, = Z;:(} aj:rg, where we labelled the co-ordinates
of a from 0 to k — 1 instead of the usual 1 to k.

Assume that there exists a non-zero v € Crg of weight at most n — k,
and say v is obtained by evaluating the polynomial p(z) = Z?;é ajzd
at the points of X. Since p takes non-zero values at no more than n—k



of the points of X, and hence vanishes in at least k£ distinct points
of F. Thus p is a polynomial of degree at most £ — 1 with at least k
distinct roots. We showed in class that the only such polynomial is
the zero polynomial, at which point p(z;) = 0 for all 4, so v =0 — a
contradiction.

(c) We try the polynomial ¢(x) = 4(z — 1) + 2 = 4z + 5, chosen so
that ¢(1) = 2, £(2) = 6. It also has £(3) = 3, ¢(4) = 0, I(5) = 4,
so v = (2,6,3,0,4) is a codeword. We claim that it is the closest
codeword to v’. For this let u be any other codeword. We saw in
part (b) that the weight of the code is at least 5 — 3 + 1 = 3, so by
the triangle inequality we have:

du (u,v") +du (v, v) > dy (w,v) > 3

Since dy (v',v) = 1 this means
du (u,v") > 2 > dy (v, ) .

8. In the space of equivalence classes of the relation x = y(C4) (that is
the space Dy/Cy of left-Cy-cosets in D,) consider the equivalence classes
of the two elements id, 7w € D4. The two elements are not equivalent
d*t-r=7x ¢ Cy4). = € Dy is equivalent to id iff z7tid € Cy, that is if
x € Cy. Also, z =1 7 (C,) iff 7712 € C4. If we call this element p then
71z = p, and multiplying by 7 on the left we have x = mp as claimed. It
remains to show that every x belongs to one of the two equivalence classes.
For this we use Lagrange’s Theorem, according to which the number of

equivalence classes is the ratio #D4/#Cy = 8/4 = 2.



