
Math 342, Spring Term 2009

Pre-Final Sheet

April 13, 2009

The exam has been scheduled for Thursday, April 16th between 15:30-18:00 at
Room 100 of the Math Building.

Material

The material for the exam consists of all the material covered in the lectures up
to and including Friday, April 3rd, as well as Problem Sets 1 through 12.

Structure

The exam will consist of several problems. Problems can be calculational (only
the steps of the calculation are required), theoretical (prove that something
holds) or factual (state a De�nition, Theorem, etc). The sample and actual
midterm exams present

Sample paper

1. Let F be a �eld, V a vector space over F .

(a) State what it means for a subset W ⊂ V to be a subspace.

(b) For V = F 4, show that W = {(x, y, z, w) ∈ V | x+ y = z + w} is a
subspace.

(c) Assume that F = Fq is the �eld with q elements. What is #V ?

(d) Let U = {(x, y, 0, 0) ∈ V }. What is #U? Show that #U |#V
(e) Explain why your answer to (d) is a special case of Lagrange's The-

orem.

2. Find all solutions to the following systems of equations:
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(a) 4x ≡ 5 (12), where x ∈ Z.

(b)

{
[5]10x+ [3]10y ≡ [2]10
[4]10x+ y = [0]10

, where x, y ∈ Z/10Z

(c) x2 = [2]3, x ∈ Z/3Z.

3. PS1 problem 4

4. PS3 problem 9

5. PS10 problem 5.

6. LetH =
(

1 1 2 0
0 2 1 1

)
∈M2×4(F3) and let C ⊂ F4

3 be the code de�ned

by C = {v | Hv = 0}.

(a) For any x, y ∈ F3 show that there is are unique z, w ∈ F3 so that
x
y
z
w

 ∈ C.
(b) Write a generating matrix for this code. This matrix will represent

the encoding function

(
x
y

)
7→


x
y
z
w

 where z, w are as in part

(a).

(c) What is the weight of this code?

(d) Can this code correct errors?

7. (RS codes)

(a) Given integers k ≤ n, a �nite �eld F , and a subset X ⊂ F of size
n, de�ne the Reed-Solomon code of dimension k in Fn given by
evaluation at X.

(b) Show that the code you de�ned has weight at least n− k + 1.
(c) Let F = F7, k = 2, n = 5. You have received the vector v′ =

(2, 6, 0, 0, 4) ∈ F5
7 which (up to transmission errors) represents the

values of a linear polynomial at the points X = {1, 2, 3, 4, 5} ∈ F7.
Which linear polynoimal is the maximum likelihood decoding of this
transmission? Prove your claim.

8. The group of rigid symmetries of the square is a subgroup D4 ⊂ S4 of
order 8. In contains a cyclic subgroup of order 4 � the rotations � which
we will denote C4. D4 also contains the re�ection by a diagonal, which we
denote π. Using Lagrange's Theorem show that every symmetry of the
square is either of the form ρ or πρ for some rotation ρ ∈ C4.
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Sample solutions

1. Let F be a �eld, V a vector space over F .

(a) A subset W ⊂ V is a subspace if it is non-empty and is closed under
addition and under multiplication by scalars.

(b) If x = y = z = w = 0 then clearly x + y = z + w so 0 ∈ W . Also,
if (x, y, z, w) , (x′, y′, z′, w′) ∈ W and α ∈ F then the associtativity
and commutativity of addition in F show that (x+ x′) + (y + y′) =
(x+y)+(x′+y′) while (z+z′)+(w+w′) = (z+w)+(z′+w′). Since
(x+ y) = (z +w) and (x′ + y′) = (z′ +w′) it follows that (x+ x′) +
(y+y′) = (z+z′)+(w+w′), that is that (x, y, z, w)+(x′, y′, z′, w′) =
(x+x′, y+y′, z+z′, w+w′) ∈W . We also have α(x+y) = α(z+w).
By the distributive law in F we have αx + αy = αz + αw, that is
that α(x, y, z, w) = (αx, αy, αz, αw) ∈W .

(c) V is the space of 4-tuples of elements drawn from a set of size q, so
#V = q4.

(d) Similarly, #U = q2 which divides its square q4.

(e) U ⊂ V is a subspace. In particular, it is a subset of V containing the
zero vector and closed under addition. Thinking only of the additive
group (V, 0,+), U is a subgroup. Its order must divide that of V by
Lagrange's Theorem.

2. Find all solutions to the following systems of equations:

(a) Since 4x is even for all x ∈ Z, 4x− 5 is always odd and in particular
not divisible by 12. It follows that there are no solutions to the
equation.

(b) Let x, y ∈ Z/10Z be solutions to the equation. Multiplying the
second equation by [3]10 and subtracting the two equations shows
[3]10x = [2]10. Since 7 · 3 ≡ 1 (10) this implies x = [7]10[2]10 = [4]10.
The second equation then shows [6]10 + y = [0]10, that is y = [4]10 as
well. We also have 5 ·4+3 ·4 = 32 ≡ 2 (10). Thus x = [4]10, y = [4]10
is the unique solution to the system of equations.

(c) We have [0]23 = [0 · 0]3 = [0]3, [1]23 = [1 · 1]3 = [1]3, [2]23 = [2 · 2]3 =
[4]3 = [1]3. Since Z/3Z = {[0], [1], [2]} the equation has no solutions.

3. PS1 problem 4.

4. PS3 problem 9.

5. PS10 problem 5.

6. LetH =
(

1 1 2 0
0 2 1 1

)
∈M2×4(F3) and let C ⊂ F4

3 be the code de�ned

by C = {v | Hv = 0}.
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(a) We �rst show that if z, w exist they are unique. For this let x, y, zw ∈

F3 be such that


x
y
z
w

 ∈ C. Then x+y+2z = 0 and 2y+z+w = 0.

Adding z to the �rst equation, y+2z to the second, we �nd: z = x+y,
w = y + 2z, and both equatios imply w = y + 2(x+ y) = 2x, so that
both z, w and uniquely determined by x, y. Conversely, given x, y
setting z = x+y and w = 2x we have x+y+2z = x+y+2(x+y) =
3(x+ y) = 0 and 2y + z + w = 2y + x+ y + 2x = 3(x+ y) = 0.

(b) G =


1 0
0 1
1 1
2 0

.

(c) Since G

(
0
1

)
=


0
1
1
0

 ∈ C, the code has weight at most two.

Conversely, let


x
y
z
w

 ∈ C. If x 6= 0 then w = 2x does not vanish

as well (it is the product of two non-zero elements of a �eld) and the
codeword has weight at least 2. If x = 0 but y 6= 0 then z = y 6= 0
and the codeword has weight two. If x = y = 0 then z = w = 0 as
well and the codeword vanishes.

(d) Since the weight is two, the code is not guaranteed to correct even all

1-bit errors. For example, if we recieve the trasmission v′ =


0
1
2
0


it is equally consistent that the sender tramitted


0
1
1
0

 and


0
2
2
0

.

7. (RS codes)

(a) Say X = {xi}ni=1 with the xi ∈ F distinct. The Reed-Solomon code
is the set of n-tuples v ∈ Fn for which there exists a ∈ F k such that
for all 1 ≤ i ≤ n, vi =

∑k−1
j=0 ajx

j
i , where we labelled the co-ordinates

of a from 0 to k − 1 instead of the usual 1 to k.

(b) Assume that there exists a non-zero v ∈ CRS of weight at most n−k,
and say v is obtained by evaluating the polynomial p(x) =

∑k−1
j=0 ajx

j

at the points ofX. Since p takes non-zero values at no more than n−k
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of the points of X, and hence vanishes in at least k distinct points
of F . Thus p is a polynomial of degree at most k − 1 with at least k
distinct roots. We showed in class that the only such polynomial is
the zero polynomial, at which point p(xi) = 0 for all i, so v = 0 � a
contradiction.

(c) We try the polynomial `(x) = 4(x − 1) + 2 = 4x + 5, chosen so
that `(1) = 2, `(2) = 6. It also has `(3) = 3, `(4) = 0, l(5) = 4,
so v = (2, 6, 3, 0, 4) is a codeword. We claim that it is the closest
codeword to v′. For this let u be any other codeword. We saw in
part (b) that the weight of the code is at least 5 − 3 + 1 = 3, so by
the triangle inequality we have:

dH (u, v′) + dH (v′, v) ≥ dH (u, v) ≥ 3 .

Since dH (v′, v) = 1 this means

dH (u, v′) ≥ 2 > dH (v, v′) .

8. In the space of equivalence classes of the relation x ≡L y (C4) (that is
the space D4/C4 of left-C4-cosets in D4) consider the equivalence classes
of the two elements id, π ∈ D4. The two elements are not equivalent
(id−1 · π = π /∈ C4). x ∈ D4 is equivalent to id i� x−1id ∈ C4, that is if
x ∈ C4. Also, x ≡L π (C4) i� π−1x ∈ C4. If we call this element ρ then
π−1x = ρ, and multiplying by π on the left we have x = πρ as claimed. It
remains to show that every x belongs to one of the two equivalence classes.
For this we use Lagrange's Theorem, according to which the number of
equivalence classes is the ratio #D4/#C4 = 8/4 = 2.
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